Back Action in quantum mechanics is the phenomenon in which the act of measuring a property of a particle directly influences the state of the particle. In all scientific measurement, there exists a degree of error due to a variety of factors. This could include unaccounted-for variables, imperfect procedure execution, or imperfect measurement devices. In classical mechanics, it is assumed that the error of any experiment could theoretically be zero if all relevant aspects of the configuration are known and the measurement devices are perfect. However, quantum mechanical theory supports that the act of measuring a quantity, regardless of the degree of precision, carries inherent uncertainty as the measurement influences the quantity itself.[1] [2] This behavior is known as back action. This is due to the fact that quantum uncertainty carries minimum fluctuations as a probability. For example, even objects at absolute zero still carry ‘motion’ due to such fluctuations.[3]
Simultaneous measurement is not possible in quantum mechanics for observables that do not commute (the commutator of the observables is not equal to zero). Since observable quantities are treated as operators, their values do not necessarily follow classical algebraic properties. For this reason, there always remains a minimum uncertainty in regard to the uncertainty principle. This relationship sets a minimum uncertainty when measuring position and momentum. However, it can be extended to any incompatible observables.[4]
\sigmax\sigmap\geq\hbar/2
2\geq | |
\sigma | |
B |
|\left(
1 | |
2i |
\right)\langle[\hat{A},\hat{B}]\rangle|2
Each observable operator has a set of eigenstates, each with an eigenvalue. The full initial state of a system is a linear combination of the full set of its eigenstates. Upon measurement, the state then collapses to an eigenstate with a given probability and will proceed to evolve over time after measurement. Thus, measuring a system affects its future behavior and will thus affect further measurements of non-commuting observables.
Using bra-ket notation, consider a given system that begins in a state
|\psi\rangle
\hatO
\{|\omegai\rangle\}
λi
\hatO
λi
P(λi)=|\langle\omega
2 | |
i|\psi\rangle| |
The particle's state has now collapsed to the state
|\omegai\rangle
\hatB
\{|\varphii\rangle\}
bi
\hatB
\{bi\}
P(bi)=|\langle\varphii|\omega
2 | |
i\rangle| |
Had
\hatO
P(bi)=|\langle\varphi
2 | |
i|\psi\rangle| |
Thus, unless
\hatB
\hatO
\{|\varphii\rangle\}=\{|\omegai\rangle\}
[\hatO,\hatB]=0
Back action is an area of active research. Recent experiments with nanomechanical systems have attempted to evade back action while making measurements.[5] [6]