Aubry–André model explained
The Aubry–André model is a toy model of a one-dimensional crystal with periodically varying onsite energies. The model is employed to study both quasicrystals and the Anderson localization metal-insulator transition in disordered systems. It was first developed by Serge Aubry and Gilles André in 1980.[1]
Hamiltonian of the model
The Aubry–André model describes a one-dimensional lattice with hopping between nearest-neighbor sites and periodically varying onsite energies. It is a tight-binding (single-band) model with no interactions. The full Hamiltonian can be written as
H=\sumnl(-J|n\rangle\langlen+1|-J|n+1\rangle\langlen|+\epsilonn|n\rangle\langlen|r)
,
where where the sum goes over all lattice sites
,
is a
Wannier state on site
,
is the hopping energy, and the on-site energies
are given by
\epsilonn=λ\cos(2\pi\betan+\varphi)
.Here
is the amplitude of the variation of the onsite energies,
is a relative phase, and
is the period of the onsite potential modulation in units of the lattice constant. This Hamiltonian is self-dual as it retains the same form after a Fourier transformation interchanging the roles of position and momentum.
[2] Metal-insulator phase transition
For irrational values of
, corresponding to a modulation of the onsite energy incommensurate with the underlying lattice, the model exhibits a
quantum phase transition between a metallic phase and an insulating phase as
is varied. For example, for
(
the golden ratio) and almost any
,
[3] if
the eigenmodes are exponentially localized, while if
the eigenmodes are extended plane waves. The Aubry-André metal-insulator transition happens at the critical value of
which separates these two behaviors,
.
[4] While this quantum phase transition between a metallic delocalized state and an insulating localized state resembles the disorder-driven Anderson localization transition, there are some key differences between the two phenomena. In particular the Aubry–André model has no actual disorder, only incommensurate modulation of onsite energies. This is why the Aubry-André transition happens at a finite value of the pseudo-disorder strength
, whereas in one dimension the Anderson transition happens at zero disorder strength.
Energy spectrum
The energy spectrum
is a function of
and is given by the
almost Mathieu equationEn\psin=-J(\psin+1+\psin-1)+\epsilonn\psin
.
At
this is equivalent to the famous
fractal energy spectrum known as the
Hofstadter's butterfly, which describes the motion of an electron in a two-dimensional lattice under a magnetic field. In the Aubry–André model the magnetic field strength maps onto the parameter
.
Realization
Iin 2008, G. Roati et al experimentally realized the Aubry-André localization phase transition using a gas of ultracold atoms in an incommensurate optical lattice.[5]
In 2009, Y. Lahini et al. realized the Aubry–André model in photonic lattices.[6]
See also
References
- Aubry, Serge, and Gilles André. "Analyticity breaking and Anderson localization in incommensurate lattices." Ann. Israel Phys. Soc 3.133 (1980): 18.
- Domínguez-Castro . G A . Paredes . R . 2019-07-01 . The Aubry–André model as a hobbyhorse for understanding the localization phenomenon . European Journal of Physics . 40 . 4 . 045403 . 1812.06201 . 2019EJPh...40d5403D . 10.1088/1361-6404/ab1670 . 0143-0807 . 119484117.
- Jitomirskaya . Svetlana Ya. . 1999 . Metal-Insulator Transition for the Almost Mathieu Operator . Annals of Mathematics . 150 . 3 . 1159–1175 . 10.2307/121066 . 0003-486X. math/9911265 .
- Martínez . Alejandro J. . Porter . Mason A. . Kevrekidis . P. G. . 2018-08-28 . Quasiperiodic granular chains and Hofstadter butterflies . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences . en . 376 . 2127 . 20170139 . 10.1098/rsta.2017.0139 . 1364-503X . 6077862 . 30037937. 1801.09860 . 2018RSPTA.37670139M .
- Roati . Giacomo . D’Errico . Chiara . Fallani . Leonardo . Fattori . Marco . Fort . Chiara . Zaccanti . Matteo . Modugno . Giovanni . Modugno . Michele . Inguscio . Massimo . June 2008 . Anderson localization of a non-interacting Bose–Einstein condensate . Nature . en . 453 . 7197 . 895–898 . 10.1038/nature07071 . 1476-4687. 0804.2609 .
- Lahini . Y. . Pugatch . R. . Pozzi . F. . Sorel . M. . Morandotti . R. . Davidson . N. . Silberberg . Y. . 2009-06-30 . Observation of a Localization Transition in Quasiperiodic Photonic Lattices . Physical Review Letters . en . 103 . 1 . 013901 . 10.1103/PhysRevLett.103.013901 . 19659147 . 0807.2845 . 2009PhRvL.103a3901L . 33770751 . 0031-9007.