The Atiyah–Segal completion theorem is a theorem in mathematics about equivariant K-theory in homotopy theory. Let G be a compact Lie group and let X be a G-CW-complex. The theorem then states that the projection map
\pi\colonX x EG\toX
induces an isomorphism of prorings
\pi*\colon
*(X) | |
K | |
\widehat{I |
Here, the induced map has as domain the completion of the G-equivariant K-theory of X with respect to I, where I denotes the augmentation ideal of the representation ring of G.
In the special case of X being a point, the theorem specializes to give an isomorphism
K*(BG)\congR(G)\widehat{I
The theorem can be interpreted as giving a comparison between the geometrical process of taking the homotopy quotient of a G-space, by making the action free before passing to the quotient, and the algebraic process of completing with respect to an ideal.[1]
The theorem was first proved for finite groups by Michael Atiyah in 1961,[2] and a proof of the general case was published by Atiyah together with Graeme Segal in 1969.[3] Different proofs have since appeared generalizing the theorem to completion with respect to families of subgroups.[4] [5] The corresponding statement for algebraic K-theory was proven by Alexander Merkurjev, holding in the case that the group is algebraic over the complex numbers.