In the mathematical field of group theory, an Artin transfer is a certain homomorphism from an arbitrary finite or infinite group to the commutator quotient group of a subgroup of finite index. Originally, such mappings arose as group theoretic counterparts of class extension homomorphisms of abelian extensions of algebraic number fields by applying Artin's reciprocity maps to ideal class groups and analyzing the resulting homomorphisms between quotients of Galois groups. However, independently of number theoretic applications, a partial order on the kernels and targets of Artin transfers has recently turned out to be compatible with parent-descendant relations between finite p-groups (with a prime number p), which can be visualized in descendant trees. Therefore, Artin transfers provide a valuable tool for the classification of finite p-groups and for searching and identifying particular groups in descendant trees by looking for patterns defined by the kernels and targets of Artin transfers. These strategies of pattern recognition are useful in purely group theoretic context, as well as for applications in algebraic number theory concerning Galois groups of higher p-class fields and Hilbert p-class field towers.
Let
G
H\leG
n.
Definitions.[1] A left transversal of
H
G
(g1,\ldots,gn)
H
G
n | |
G=sqcup | |
i=1 |
giH.
Similarly a right transversal of
H
G
(d1,\ldots,dn)
H
G
n | |
G=sqcup | |
i=1 |
Hdi.
Remark. For any transversal of
H
G
1\lei0\len
g | |
i0 |
\inH
d | |
i0 |
\inH
i0
H
1
Lemma. Let
G
H
-1 | |
(g | |
1 |
-1 | |
,\ldots,g | |
n |
)
(g1,\ldots,gn)
H
G
H
G
H
G
H
G
Proof. Since the mapping
x\mapstox-1
G
G=G-1
n | |
=sqcup | |
i=1 |
-1 | |
(g | |
iH) |
n | |
=sqcup | |
i=1 |
H-1
-1 | |
g | |
i |
n | |
=sqcup | |
i=1 |
-1 | |
Hg | |
i |
.
For a normal subgroup
H
xH=Hx
x\inG
We must check when the image of a transversal under a homomorphism is also a transversal.
Proposition. Let
\phi:G\toK
(g1,\ldots,gn)
H
G
n.
(\phi(g1),\ldots,\phi(gn))
\phi(H)
\phi(G)
(\phi(G):\phi(H))=n.
\ker(\phi)\leH.
Proof. As a mapping of sets
\phi
\phi(G)=\phi
n | |
\left(cup | |
i=1 |
giH\right
n | |
)=cup | |
i=1 |
\phi(giH)=cup
n | |
i=1 |
\phi(gi)\phi(H),
but weakens the equality for the intersection to a trivial inclusion:
\emptyset=\phi(\emptyset)=\phi(giH\capgjH)\subseteq\phi(giH)\cap\phi(gjH)=\phi(gi)\phi(H)\cap\phi(gj)\phi(H), i\nej.
Suppose for some
1\lei\lej\len
\phi(gi)\phi(H)\cap\phi(gj)\phi(H)\ne\emptyset
then there exists elements
hi,hj\inH
\phi(gi)\phi(hi)=\phi(gj)\phi(hj)
Then we have:
\begin{align} \phi(gi)\phi(hi)=\phi(gj)\phi(hj)&\Longrightarrow
-1 | |
\phi(g | |
j) |
\phi(gi)\phi(hi)\phi(h
-1 | |
j) |
=1\ &\Longrightarrow\phi\left
-1 | |
(g | |
j |
gihih
-1 | |
j |
\right)=1\\ &\Longrightarrow
-1 | |
g | |
j |
gihih
-1 | |
j |
\in\ker(\phi)\\ &\Longrightarrow
-1 | |
g | |
j |
gihih
-1 | |
j |
\inH&&\ker(\phi)\leH\\ &\Longrightarrow
-1 | |
g | |
j |
gi\inH&&hih
-1 | |
j |
\inH\\ &\LongrightarrowgiH=gjH\\ &\Longrightarrowi=j \end{align}
Conversely if
\ker(\phi)\nsubseteqH
x\inG\setminusH
\phi(x)=1.
\phi
x ⋅ H\cap1 ⋅ H=\emptyset
\phi(x)\phi(H)\cap\phi(1)\phi(H)=1 ⋅ \phi(H)\cap1 ⋅ \phi(H)=\phi(H).
Remark. We emphasize the important equivalence of the proposition in a formula:
(1) \ker(\phi)\leH \Longleftrightarrow \begin{cases}
n | |
\phi(G)=sqcup | |
i=1 |
\phi(gi)\phi(H)\\(\phi(G):\phi(H))=n\end{cases}
Suppose
(g1,\ldots,gn)
H
n
G
x\inG
\pix\inSn
H
G
(2) \foralli\in\{1,\ldots,n\}: xgiH=g
\pix(i) |
H\Longrightarrowxgi\in
g | |
\pix(i) |
H.
Using this we define a set of elements called the monomials associated with
x
(g1,\ldots,gn)
\foralli\in\{1,\ldots,n\}: ux(i):=g
-1 | |
\pix(i) |
xgi\inH.
Similarly, if
(d1,\ldots,dn)
H
G
x\inG
\rhox\inSn
H
G
(3) \foralli\in\{1,\ldots,n\}: Hdix=Hd
\rhox(i) |
\Longrightarrowdix\in
Hd | |
\rhox(i) |
.
And we define the monomials associated with
x
(d1,\ldots,dn)
\foralli\in\{1,\ldots,n\}: wx(i):=dixd
-1 | |
\rhox(i) |
\inH.
Definition.[1] The mappings:
\begin{cases}G\toSn\ x\mapsto\pix\end{cases} \begin{cases}G\toSn\ x\mapsto\rhox\end{cases}
are called the permutation representation of
G
Sn
(g1,\ldots,gn)
(d1,\ldots,dn)
Definition.[1] The mappings:
\begin{cases}G\toHn x Sn\ x\mapsto(ux(1),\ldots,ux(n);\pix)\end{cases} \begin{cases}G\toHn x Sn\ x\mapsto(wx(1),\ldots,wx(n);\rhox)\end{cases}
are called the monomial representation of
G
Hn x Sn
(g1,\ldots,gn)
(d1,\ldots,dn)
Lemma. For the right transversal
-1 | |
(g | |
1 |
-1 | |
,\ldots,g | |
n |
)
(g1,\ldots,gn)
x\inG
(4) \begin{cases}
w | |
x-1 |
-1 | |
(i)=u | |
x(i) |
&1\lei\len
\ \rho | |
x-1 |
=\pix\end{cases}
Proof. For the right transversal
-1 | |
(g | |
1 |
-1 | |
,\ldots,g | |
n |
)
wx(i)=g
-1 | |
i |
xg | |
\rhox(i) |
1\lei\len
(g1,\ldots,gn)
\foralli\in\{1,\ldots,n\}:
-1 | |
u | |
x(i) |
=\left
-1 | |
(g | |
\pix(i) |
xgi\right)-1
-1 | |
=g | |
i |
x-1
g | |
\pix(i) |
-1 | |
=g | |
i |
x-1
g | |||||||
|
=w | |
x-1 |
(i).
This relation simultaneously shows that, for any
x\inG
\rho | |
x-1 |
=\pix
w | |
x-1 |
-1 | |
(i)=u | |
x(i) |
1\lei\len
G
H
n.
(g)=(g1,\ldots,gn)
H
G
\pix:G\toSn,
\foralli\in\{1,\ldots,n\}: ux(i)
-1 | |
:=g | |
\pix(i) |
xgi\inH.
Similarly let
(d)=(d1,\ldots,dn)
H
G
\rhox:G\toSn
\foralli\in\{1,\ldots,n\}: wx(i):=dixd
-1 | |
\rhox(i) |
\inH.
The Artin transfer
(g) | |
T | |
G,H |
:G\toH/H'
(g1,\ldots,gn)
(5) \forallx\inG:
(g) | |
T | |
G,H |
(x):=
n | |
\prod | |
i=1 |
-1 | |
g | |
\pix(i) |
xgi ⋅ H'=
n | |
\prod | |
i=1 |
ux(i) ⋅ H'.
Similarly we define:
(6) \forallx\inG:
(d) | |
T | |
G,H |
(x):=
n | |
\prod | |
i=1 |
dixd
-1 | |
\rhox(i) |
⋅ H'
n | |
=\prod | |
i=1 |
wx(i) ⋅ H'.
Remarks. Isaacs calls the mappings
\begin{cases}P:G\toH\ x\mapsto
n | |
\prod | |
i=1 |
ux(i)\end{cases} \begin{cases}P:G\toH
n | |
\ x\mapsto\prod | |
i=1 |
wx(i)\end{cases}
the pre-transfer from
G
H
\phi:H\toA
H
A
G
A
\phi
\begin{cases}(\phi\circP):G\toA
n | |
\ x\mapsto\prod | |
i=1 |
\phi(ux(i))\end{cases} \begin{cases}(\phi\circP):G\toA
n | |
\ x\mapsto\prod | |
i=1 |
\phi(wx(i))\end{cases}
Taking the natural epimorphism
\begin{cases}\phi:H\toH/H'\ v\mapstovH'\end{cases}
yields the preceding definition of the Artin transfer
TG,H
Proposition.[1] [2] [5] [6] The Artin transfers with respect to any two left transversals of
H
G
Proof. Let
(\ell)=(\ell1,\ldots,\elln)
(g)=(g1,\ldots,gn)
H
G
\sigma\inSn
\foralli\in\{1,\ldots,n\}: giH=\ell\sigma(i)H.
Consequently:
\foralli\in\{1,\ldots,n\},\existshi\inH: gihi=\ell\sigma(i).
For a fixed element
x\inG
λx\inSn
\foralli\in\{1,\ldots,n\}:
\ell | |
λx(\sigma(i)) |
H=x\ell\sigma(i)H=xgihiH=xgiH=
g | |
\pix(i) |
H=
g | |
\pix(i) |
h | |
\pix(i) |
H
=\ell | |
\sigma(\pix(i)) |
H.
Therefore, the permutation representation of
G
(\ell1,\ldots,\elln)
λx\circ\sigma=\sigma\circ\pix
λx=\sigma\circ\pix\circ\sigma-1\inSn.
\begin{align} vx(i)&:=
-1 | |
\ell | |
λx(i) |
x\elli\inH\\ ux(i)&:=
-1 | |
g | |
\pix(i) |
xgi\inH \end{align}
we have:
\foralli\in\{1,\ldots,n\}: vx(\sigma(i))
-1 | |
=\ell | |
λx(\sigma(i)) |
x\ell\sigma(i)=
-1 | |
\ell | |
\sigma(\pix(i)) |
xgihi=\left
(g | |
\pix(i) |
h | |
\pix(i) |
\right)-1xgihi=
-1 | |
h | |
\pix(i) |
-1 | |
g | |
\pix(i) |
xgihi=h
-1 | |
\pix(i) |
ux(i)hi.
Finally since
H/H'
\sigma
\pix
(\ell) | |
T | |
G,H |
n | |
(x)=\prod | |
i=1 |
vx(\sigma(i)) ⋅
n | |
H'=\prod | |
i=1 |
-1 | |
h | |
\pix(i) |
ux(i)hi ⋅
n | |
H'=\prod | |
i=1 |
ux(i)\prod
n | |
i=1 |
-1 | |
h | |
\pix(i) |
n | |
\prod | |
i=1 |
hi ⋅
n | |
H'=\prod | |
i=1 |
ux(i) ⋅ 1 ⋅
n | |
H'=\prod | |
i=1 |
ux(i) ⋅
(g) | |
H'=T | |
G,H |
(x),
as defined in formula (5).
Proposition. The Artin transfers with respect to any two right transversals of
H
G
Proof. Similar to the previous proposition.
Proposition. The Artin transfers with respect to
(g-1)=
-1 | |
(g | |
1 |
-1 | |
,\ldots,g | |
n |
)
(g)=(g1,\ldots,gn)
Proof. Using formula (4) and
H/H'
(g-1) | |
T | |
G,H |
n | |
(x)=\prod | |
i=1 |
-1 | |
g | |
i |
xg | |
\rhox(i) |
⋅
n | |
H'=\prod | |
i=1 |
wx(i) ⋅ H'
n | |
=\prod | |
i=1 |
u | |
x-1 |
(i)-1 ⋅ H'=\left
n | |
(\prod | |
i=1 |
u | |
x-1 |
(i) ⋅ H'\right)-1=\left
(g) | |
(T | |
G,H |
\left(x-1\right)\right)-1
(g) | |
=T | |
G,H |
(x).
The last step is justified by the fact that the Artin transfer is a homomorphism. This will be shown in the following section.
Corollary. The Artin transfer is independent of the choice of transversals and only depends on
H
G
Theorem.[1] [2] [7] [5] [6] [8] [9] Let
(g1,\ldots,gn)
H
G
\begin{cases}TG,H:G\toH/H'
n | |
\ x\mapsto\prod | |
i=1 |
-1 | |
g | |
\pix(i) |
xgi ⋅ H'\end{cases}
and the permutation representation:
\begin{cases}G\toSn\ x\mapsto\pix\end{cases}
are group homomorphisms:
(7) \forallx,y\inG: TG,H(xy)=TG,H(x) ⋅ TG,H(y) and \pixy=\pix\circ\piy.
Let
x,y\inG
TG,H(x) ⋅ TG,H(y)=
n | |
\prod | |
i=1 |
-1 | |
g | |
\pix(i) |
xgiH' ⋅ \prod
n | |
j=1 |
-1 | |
g | |
\piy(j) |
ygj ⋅ H'
Since
H/H'
\piy
n | |
\begin{align} \prod | |
i=1 |
-1 | |
g | |
\pix(i) |
xgiH' ⋅ \prod
n | |
j=1 |
-1 | |
g | |
\piy(j) |
ygj ⋅ H'
n | |
&=\prod | |
j=1 |
-1 | |
g | |
\pix(\piy(j)) |
x
g | |
\piy(j) |
n | |
H' ⋅ \prod | |
j=1 |
-1 | |
g | |
\piy(j) |
ygj ⋅ H'
n | |
\\ &=\prod | |
j=1 |
-1 | |
g | |
\pix(\piy(j)) |
xg | |
\piy(j) |
-1 | |
g | |
\piy(j) |
ygj ⋅ H'
n | |
\\ &=\prod | |
j=1 |
-1 | |
g | |
(\pix\circ\piy)(j)) |
xygj ⋅ H'\\ &=TG,H(xy) \end{align}
This relation simultaneously shows that the Artin transfer and the permutation representation are homomorphisms.
It is illuminating to restate the homomorphism property of the Artin transfer in terms of the monomial representation. The images of the factors
x,y
TG,H
n | |
(x)=\prod | |
i=1 |
ux(i) ⋅ H' and TG,H
n | |
(y)=\prod | |
j=1 |
uy(j) ⋅ H'.
In the last proof, the image of the product
xy
TG,H
n | |
(xy)=\prod | |
j=1 |
-1 | |
g | |
\pix(\piy(j)) |
xg | |
\piy(j) |
-1 | |
g | |
\piy(j) |
ygj ⋅
n | |
H'=\prod | |
j=1 |
ux(\piy(j)) ⋅ uy(j) ⋅ H'
which is a very peculiar law of composition discussed in more detail in the following section.
The law is reminiscent of crossed homomorphisms
x\mapstoux
H1(G,M)
G
M
uxy
y ⋅ | |
=u | |
x |
uy
x,y\inG
The peculiar structures which arose in the previous section can also be interpreted by endowing the cartesian product
Hn x Sn
H\wrSn
H
Sn
\{1,\ldots,n\}.
Definition. For
x,y\inG
(8) (ux(1),\ldots,ux(n);\pix) ⋅ (uy(1),\ldots,uy(n);\piy):=(ux(\piy(1)) ⋅ uy(1),\ldots,ux(\piy(n)) ⋅ uy(n);\pix\circ\piy)=(uxy(1),\ldots,uxy(n);\pixy).
Theorem.[1] [6] With this law of composition on
Hn x Sn
\begin{cases}G\toH\wrSn\ x\mapsto(ux(1),\ldots,ux(n);\pix)\end{cases}
The homomorphism property has been shown above already. For a homomorphism to be injective, it suffices to show the triviality of its kernel. The neutral element of the group
Hn x Sn
(1,\ldots,1;1)
1
(ux(1),\ldots,ux(n);\pix)=(1,\ldots,1;1)
x\inG
\pix=1
\foralli\in\{1,\ldots,n\}: 1=ux(i)=g
-1 | |
\pix(i) |
xgi=g
-1 | |
i |
xgi.
Finally, an application of the inverse inner automorphism with
gi
x=1
Remark. The monomial representation of the theorem stands in contrast to the permutation representation, which cannot be injective if
|G|>n!.
Remark. Whereas Huppert uses the monomial representation for defining the Artin transfer, we prefer to give the immediate definitions in formulas (5) and (6) and to merely illustrate the homomorphism property of the Artin transfer with the aid of the monomial representation.
G
K\leH\leG
(G:H)=n,(H:K)=m
(G:K)=(G:H) ⋅ (H:K)=nm<infty.
TG,K
\tilde{T}H,K:H/H'\toK/K'
TG,H
(9) TG,K=\tilde{T}H,K\circTG,H
If
(g1,\ldots,gn)
H
G
(h1,\ldots,hm)
K
H
n | |
G=\sqcup | |
i=1 |
giH
m | |
H=\sqcup | |
j=1 |
hjK
n | |
G=sqcup | |
i=1 |
m | |
sqcup | |
j=1 |
gihjK
is a disjoint left coset decomposition of
G
K
Given two elements
x\inG
y\inH
\pix\inSn
\sigmay\inSm
\begin{align} ux(i)&
-1 | |
:=g | |
\pix(i) |
xgi\inH&&forall1\lei\len\\ vy(j)&
-1 | |
:=h | |
\sigmay(j) |
yhj\inK&&forall1\lej\lem \end{align}
Then, anticipating the definition of the induced transfer, we have
\begin{align} TG,H(x)
n | |
&=\prod | |
i=1 |
ux(i) ⋅ H'\\ \tilde{T}H,K(y ⋅ H')&=TH,K
m | |
(y)=\prod | |
j=1 |
vy(j) ⋅ K' \end{align}
For each pair of subscripts
1\lei\len
1\lej\lem
yi:=ux(i)
xgihj=g
\pix(i) |
-1 | |
g | |
\pix(i) |
xgihj=g
\pix(i) |
ux(i)hj=g
\pix(i) |
yihj
=g | |
\pix(i) |
h | |||||||
|
-1 | |||||||
h | |||||||
|
yihj
=g | |
\pix(i) |
h | |||||||
|
v | |
yi |
(j),
resp.
-1 | |||||||
h | |||||||
|
-1 | |
g | |
\pix(i) |
xgihj=v
yi |
(j).
Therefore, the image of
x
TG,K
\begin{align} TG,K(x)
n | |
&=\prod | |
i=1 |
m | |
\prod | |
j=1 |
v | |
yi |
(j) ⋅ K'
n | |
\\ &=\prod | |
i=1 |
m | |
\prod | |
j=1 |
-1 | |||||||
h | |||||||
|
-1 | |
g | |
\pix(i) |
xgihj ⋅ K'
n | |
\ &=\prod | |
i=1 |
m | |
\prod | |
j=1 |
-1 | |||||||
h | |||||||
|
ux(i)hj ⋅ K'
n | |
\\ &=\prod | |
i=1 |
m | |
\prod | |
j=1 |
-1 | |||||||
h | |||||||
|
yihj ⋅ K'
n | |
\\ &=\prod | |
i=1 |
\tilde{T}H,K\left(yi ⋅ H'\right)\\ &=\tilde{T}H,K\left
n | |
(\prod | |
i=1 |
yi ⋅ H'\right)\\ &=\tilde{T}H,K\left
n | |
(\prod | |
i=1 |
ux(i) ⋅ H'\right)\\ &=\tilde{T}H,K(TG,H(x)) \end{align}
Finally, we want to emphasize the structural peculiarity of the monomial representation
\begin{cases}G\toKn ⋅ x Sn ⋅ \ x\mapsto(kx(1,1),\ldots,kx(n,m);\gammax)\end{cases}
which corresponds to the composite of Artin transfers, defining
kx(i,j):=\left
((gh) | |
\gammax(i,j) |
\right)-1x(gh)(i,j)\inK
for a permutation
\gammax\inSn ⋅
(gh)(i,j):=gihj
1\lei\len
1\lej\lem
The preceding proof has shown that
kx(i,j)=h
-1 | |||||||
|
-1 | |
g | |
\pix(i) |
xgihj.
Therefore, the action of the permutation
\gammax
[1,n] x [1,m]
\gammax(i,j)=(\pix(i),
\sigma | |
ux(i) |
(j))
j
i
\sigma | |
ux(i) |
\inSm
i
j
\gammax\inSn ⋅
(\pix;\sigma
ux(1) |
,\ldots,\sigma | |
ux(n) |
)\inSn x
n, | |
S | |
m |
which will be written in twisted form in the next section.
The permutations
\gammax
\begin{cases}G\toK\wrSn ⋅ \ x\mapsto(kx(1,1),\ldots,kx(n,m);\gammax)\end{cases}
in the previous section, are of a very special kind. They belong to the stabilizer of the natural equipartition of the set
[1,n] x [1,m]
n
Sm\wrSn
Sm
Sn
\{1,\ldots,n\}
n x | |
S | |
m |
Sn
\begin{align} (10) \forallx,z\inG: \gammax ⋅ \gammaz
&=(\sigma | |
ux(1) |
,\ldots,\sigma | |
ux(n) |
;\pix) ⋅
(\sigma | |
uz(1) |
,\ldots,\sigma | |
uz(n) |
;\piz)\\ &=(\sigma
ux(\piz(1)) |
\circ\sigma | |
uz(1) |
,\ldots,\sigma | |
ux(\piz(n)) |
\circ\sigma | |
uz(n) |
;\pix\circ\piz)
\\ &=(\sigma | |
uxz(1) |
,\ldots,\sigma | |
uxz(n) |
;\pixz)\\ &=\gammaxz\end{align}
This law reminds of the chain rule
D(g\circf)(x)=D(g)(f(x))\circD(f)(x)
x\inE
f:E\toF
g:F\toG
The above considerations establish a third representation, the stabilizer representation,
\begin{cases}G\toSm\wrSn
\ x\mapsto(\sigma | |
ux(1) |
,\ldots,\sigma | |
ux(n) |
;\pix)\end{cases}
of the group
G
Sm\wrSn
G
Theorem. The stabilizer representation
\begin{cases}G\toSm\wrSn\ x\mapsto\gammax
=(\sigma | |
ux(1) |
,\ldots,\sigma | |
ux(n) |
;\pix)\end{cases}
G
Sm\wrSn
Let
(g1,\ldots,gn)
H
n
G
x\mapsto\pix
Theorem.[1] [3] [7] [5] [8] [9] Suppose the permutation
\pix
\zeta1,\ldots,\zetat\inSn
f1,\ldotsft,
(11) \left(gjH,
g | |
\zetaj(j) |
H,
g | |||||||
|
H,\ldots,
g | ||||||||||
|
H\right)=\left(gjH,xgjH,
2g | |
x | |
jH, |
\ldots,
fj-1 | |
x |
gjH\right),
for
1\lej\let
f1+ … +ft=n.
x\inG
(12) TG,H
t | |
(x)=\prod | |
j=1 |
-1 | |
g | |
j |
fj | |
x |
gj ⋅ H'.
Define
\ellj,k
kg | |
:=x | |
j |
0\lek\lefj-1
1\lej\let
H
G
(13)
t | |
G=sqcup | |
j=1 |
fj-1 | |
sqcup | |
k=0 |
kg | |
x | |
jH |
is a disjoint decomposition of
G
H
Fix a value of
1\lej\let
\begin{align}x\ellj,k
k+1 | |
&=xx | |
j=x |
gj=\ellj,k+1\in\ellj,k+1H&&\forallk\in\{0,\ldots,fj-2\}
\ x\ell | |
j,fj-1 |
fj-1 | |
&=xx |
fj | |
g | |
j=x |
gj\ingjH=\ellj,0H \end{align}
Define:
\begin{align}ux(j,k)
-1 | |
&:=\ell | |
j,k+1 |
x\ellj,k=1\inH&&\forallk\in\{0,\ldots,fj-2\}\\ ux(j,fj-1)
-1 | |
&:=\ell | |
j,0 |
x\ell | |
j,fj-1 |
-1 | |
=g | |
j |
fj | |
x |
gj\inH\end{align}
Consequently,
TG,H
t | |
(x)=\prod | |
j=1 |
fj-1 | |
\prod | |
k=0 |
ux(j,k) ⋅
t | |
H'=\prod | |
j=1 |
\left
fj-2 | |
(\prod | |
k=0 |
1\right) ⋅ ux(j,fj-1) ⋅
t | |
H'=\prod | |
j=1 |
-1 | |
g | |
j |
fj | |
x |
gj ⋅ H'.
The cycle decomposition corresponds to a
(\langlex\rangle,H)
G
t | |
G=sqcup | |
j=1 |
\langlex\ranglegjH
It was this cycle decomposition form of the transfer homomorphism which was given by E. Artin in his original 1929 paper.[3]
Let
H
n
G
xH=Hx
x\inG
G/H
n
x\inG
f:=ord(xH)
xH
G/H
(g1,\ldots,gt)
\langlex,H\rangle
G
t=n/f
Theorem. Then the image of
x\inG
TG,H
(14) TG,H
t | |
(x)=\prod | |
j=1 |
-1 | |
g | |
j |
fg | |
x | |
j ⋅ |
H'
\langlexH\rangle
f
G/H
(g1,\ldots,gt)
\langlex,H\rangle
G
t=n/f
t | |
G=\sqcup | |
j=1 |
gj\langlex,H\rangle
k | |
g | |
jx |
(1\lej\let, 0\lek\lef-1)
(15)
t | |
G=\sqcup | |
j=1 |
f-1 | |
\sqcup | |
k=0 |
kH | |
g | |
jx |
of
H
G
x
TG,H
TG,H
t | |
(x)=\prod | |
j=1 |
-1 | |
g | |
j |
fg | |
x | |
j ⋅ |
H'
with exponent
f
j
Corollary. In particular, the inner transfer of an element
x\inH
(16) TG,H
TrG(H) | |
(x)=x |
⋅ H'
with the trace element
(17) TrG(H)=\sum
t | |
j=1 |
gj\in\Z[G]
of
H
G
The other extreme is the outer transfer of an element
x\inG\setminusH
G/H
G=\langlex,H\rangle
It is simply an
n
(18) TG,H(x)=xn ⋅ H'
The inner transfer of an element
x\inH
xH=H
G/H
f=1
TG,H
t | |
(x)=\prod | |
j=1 |
-1 | |
g | |
j |
xgj ⋅
t | |
H'=\prod | |
j=1 |
gj | |
x |
⋅
| ||||||||||
H'=x |
⋅ H'
with the trace element
TrG(H)=\sum
t | |
j=1 |
gj\in\Z[G]
of
H
G
The outer transfer of an element
x\inG\setminusH
G/H
G=\langlex,H\rangle
xH
G/H
f=n
n
TG,H
1 | |
(x)=\prod | |
j=1 |
1-1 ⋅ xn ⋅ 1 ⋅ H'=xn ⋅ H'.
Transfers to normal subgroups will be the most important cases in the sequel, since the central concept of this article, the Artin pattern, which endows descendant trees with additional structure, consists of targets and kernels of Artin transfers from a group
G
G'\leH\leG
G
G'
Lemma. All subgroups containing the commutator subgroup are normal.
Let
G'\leH\leG
H
G
x-1Hx\not\subseteqH
x\inG\setminusH
h\inH
y\inG\setminusH
x-1hx=y
[h,x]=h-1x-1hx=h-1y
G\setminusH
G'\leH
Explicit implementations of Artin transfers in the simplest situations are presented in the following section.
Let
G
G/G'
(p,p)
G
p+1
H1,\ldots,Hp+1
p.
Lemma. In this particular case, the Frattini subgroup, which is defined as the intersection of all maximal subgroups coincides with the commutator subgroup.
Proof. To see this note that due to the abelian type of
G/G'
G'\supsetGp,
\Phi(G)=Gp ⋅ G'=G'
For each
1\lei\lep+1
Ti:G\toHi/Hi'
G
x,y
xp,yp\inG'.
Hi
hi
G'
ti
(1,ti,t
p-1 | |
i |
)
\begin{align} Hi&=\langlehi,G'\rangle\\ G&=\langleti,Hi\rangle=sqcup
p-1 | |
j=0 |
jH | |
t | |
i \end{align} |
A convenient selection is given by
(19) \begin{cases}h1=y\ t1=x
i-2 | |
\ h | |
i=xy |
&2\lei\lep+1\ ti=y&2\lei\lep+1\end{cases}
Then, for each
1\lei\lep+1
\begin{align} (20) Ti(hi)&=
TrG(Hi) | |
h | |
i |
⋅ Hi'=h
| |||||||||||||||||||
i |
⋅ Hi'=hi ⋅ \left(
-1 | |
t | |
i |
hiti\right) ⋅ \left(
-2 | |
t | |
i |
hit
2\right | |
i |
) … \left(
-p+1 | |
t | |
i |
hit
p-1 | |
i |
\right) ⋅ Hi'=\left(hit
-1 | |
i |
\right)p
p ⋅ | |
t | |
i |
Hi'\\ (21) Ti(ti)&=
p ⋅ | |
t | |
i |
Hi' \end{align}
The reason is that in
G/Hi,
ord(hiHi)=1
ord(tiHi)=p.
The complete specification of the Artin transfers
Ti
Hi'
G'
p
Hi
Hi'=[Hi,Hi]=[G',H
hi-1 | |
i]=(G') |
,
G
G'=\langles1,\ldots,sn\rangle
(22)
hi-1 | |
H | |
i'=(G') |
=\langle[s1,hi],\ldots,[sn,hi]\rangle.
Let
G
G/G'
(p2,p)
G
p+1
H1,\ldots,Hp+1
p
p+1
U1,\ldots,Up+1
p2.
i\in\{1,\ldots,p+1\}
\begin{align}T1,i:G&\toHi/Hi'\\ T2,i:G&\toUi/Ui' \end{align}
be the Artin transfer homomorphisms. Burnside's basis theorem asserts that the group
G
x,y
p2 | |
x |
,yp\inG'.
We begin by considering the first layer of subgroups. For each of the normal subgroups
Hi
(23)
i-1 | |
h | |
i=xy |
such that
Hi=\langlehi,G'\rangle
Hi/G'
p2
Hp+1
Hp+1/G'
(p,p)
(24) \begin{cases}hp+1=y
p | |
\ h | |
0=x |
\end{cases}
such that
Hp+1=\langlehp+1,h0,G'\rangle
ti
G=\langleti,Hi\rangle
1\lei\lep+1
(25) \begin{cases}ti=y&1\lei\lep\ tp+1=x\end{cases}
Then, for each
1\lei\lep+1
\begin{align} (26) T1,i(hi)
TrG(Hi) | |
&=h | |
i |
⋅ Hi'=h
| |||||||||||||||||||
i |
⋅ Hi'=\left(hit
-1 | |
i |
\right
p ⋅ | |
) | |
i |
Hi'\\ (27) T1,i(ti)
p ⋅ | |
&=t | |
i |
Hi' \end{align}
since
ord(hiHi)=1
ord(tiHi)=p
Now we continue by considering the second layer of subgroups. For each of the normal subgroups
Ui
(28) \begin{cases}u1=y
py | |
\ u | |
i=x |
i-1&2\lei\lep\ up+1=xp\end{cases}
such that
Ui=\langleui,G'\rangle
Up+1=\langlexp,G'\rangle=Gp ⋅ G'
ti,wi
G=\langleti,wi,Ui\rangle
(29) \begin{cases}ti=x&1\lei\lep
p | |
\ w | |
i=x |
&1\lei\lep\ tp+1=x\ wp+1=y\end{cases}
Since
ord(uiUi)=1
ord(tiU
2 | |
i)=p |
ord(wiUi)=p
1\lei\lep+1
ord(tp+1Up+1)=p
\begin{align} (30) T2,i(ui)&=
TrG(Ui) | |
u | |
i |
⋅ Ui'=u
| ||||||||||||||||||||||
i |
⋅ Ui'
p-1 | |
=\prod | |
j=0 |
p-1 | |
\prod | |
k=0 |
k) | |
(w | |
i |
-1uiw
k ⋅ | |
i |
Ui'\\ (31) T2,i(ti)&=
p2 | |
t | |
i |
⋅ Ui' \end{align}
exceptionally
\begin{align} &(32) T2,p+1\left(tp+1\right)=\left
p | |
(t | |
p+1 |
\right
| |||||||||||||||||||
) |
⋅ Up+1'\\ &(33) T2,i(wi)=\left
p | |
(w | |
i |
\right
| |||||||||||||||||||
) |
⋅ Ui'&&1\lei\lep+1 \end{align}
The structure of the derived subgroups
Hi'
Ui'
Let
G
G/G'
(Hi)i\in
G'
I
i\inI
Ti:=T
G,Hi |
G
Hi/Hi'
Definition.[11] The family of normal subgroups
\varkappaH(G)=(\ker(Ti))i\in
G
(Hi)i\in
\tauH(G)=(Hi/Hi')i\in
G
(Hi)i\in
Important examples for these concepts are provided in the following two sections.
Let
G
G/G'
(p,p)
G
p+1
H1,\ldots,Hp+1
p
i\in\{1,\ldots,p+1\}
Ti:G\toHi/Hi'
Definition. The family of normal subgroups
\varkappaH(G)=(\ker(Ti))1\le
G
H1,\ldots,Hp+1
Remark. For brevity, the TKT is identified with the multiplet
(\varkappa(i))1\le
\varkappa(i)=\begin{cases}0&\ker(Ti)=G\ j&\ker(Ti)=Hjforsome1\lej\lep+1\end{cases}
Here, we take into consideration that each transfer kernel
\ker(Ti)
G'
G
Hi/Hi'
\ker(Ti)=G'
Remark. A renumeration of the maximal subgroups
Ki=H\pi(i)
Vi=T\pi(i)
\pi\inSp+1
λK(G)=(\ker(Vi))1\le
K1,\ldots,Kp+1
(λ(i))1\le
λ(i)=\begin{cases}0&\ker(Vi)=G\\j&\ker(Vi)=Kjforsome1\lej\lep+1\end{cases}
It is adequate to view the TKTs
λK(G)\sim\varkappaH(G)
Kλ(i)=\ker(Vi)=\ker(T\pi(i))=H\varkappa(\pi(i))=
-1 | |
K | |
\tilde{\pi |
(\varkappa(\pi(i)))},
the relation between
λ
\varkappa
λ=\tilde{\pi}-1\circ\varkappa\circ\pi
λ
Sp+1 | |
\varkappa |
\varkappa
(\pi,\mu)\mapsto\tilde{\pi}-1\circ\mu\circ\pi
Sp+1
\{1,\ldots,p+1\}\to\{0,1,\ldots,p+1\},
\tilde{\pi}\inSp+2
\pi\inSp+1
\tilde{\pi}(0)=0,
H0=G,K0=G.
Definition. The orbit
Sp+1 | |
\varkappa(G)=\varkappa |
\varkappa
G
Remark. Let
\#l{H}0(G):=\#\{1\lei\lep+1\mid\varkappa(i)=0\}
\ker(Ti)=G
G
p
0\len\lep+1
G
G/G'
(p,p)
\#l{H}0(G)=n
p=2
2
G
G/G'\simeq(2,2)
\#l{H}0(G)\ge2
2
G=C2 x C2
\#l{H}0(G)=3
In the following concrete examples for the counters
\#l{H}0(G)
For
p=3
\#l{H}0(G)=0
G=\langle27,4\rangle
9
\varkappa=(1111)
\#l{H}0(G)=1
G\in\{\langle243,6\rangle,\langle243,8\rangle\}
\varkappa\in\{(0122),(2034)\}
\#l{H}0(G)=2
G=\langle243,3\rangle
\varkappa=(0043)
\#l{H}0(G)=3
G=\langle81,7\rangle
\varkappa=(2000)
\#l{H}0(G)=4
G=\langle27,3\rangle
3
\varkappa=(0000)
Let
G
G/G'
(p2,p).
G
p+1
H1,\ldots,Hp+1
p
p+1
U1,\ldots,Up+1
p2.
Assumption. Suppose
Hp+1
p+1 | |
=\prod | |
j=1 |
Uj
is the distinguished maximal subgroup and
Up+1
p+1 | |
=cap | |
j=1 |
Hj
is the distinguished subgroup of index
p2
\Phi(G)
G
For each
1\lei\lep+1
T1,i:G\toHi/Hi'
Definition. The family
\varkappa1,H,U(G)=(\ker(T1,i
p+1 | |
)) | |
i=1 |
G
H1,\ldots,Hp+1
U1,\ldots,Up+1
(\varkappa1(i))
p+1 | |
i=1 |
\varkappa1(i)=\begin{cases}0&\ker(T1,i)=Hp+1,\\j&\ker(T1,i)=Ujforsome1\lej\lep+1.\end{cases}
Remark. Here, we observe that each first layer transfer kernel is of exponent
p
G'
Hj
1\lej\lep
Hj/G'
p2
Hp+1/G'
(p,p)
For each
1\lei\lep+1
T2,i:G\toUi/Ui'
G
Ui
Definition. The family
\varkappa2,U,H(G)=(\ker(T2,i
p+1 | |
)) | |
i=1 |
G
U1,\ldots,Up+1
H1,\ldots,Hp+1
(\varkappa2(i))
p+1 | |
i=1 |
,
\varkappa2(i)=\begin{cases}0&\ker(T2,i)=G,\\j&\ker(T2,i)=Hjforsome1\lej\lep+1.\end{cases}
Combining the information on the two layers, we obtain the (complete) transfer kernel type
\varkappaH,U(G)=(\varkappa1,H,U(G);\varkappa2,U,H(G))
G
H1,\ldots,Hp+1
U1,\ldots,Up+1
Remark. The distinguished subgroups
Hp+1
Up+1=\Phi(G)
G
Ki=H\tau(i)(1\lei\lep)
V1,i=T1,\tau(i)
\tau\inSp
Wi=U\sigma(i)(1\lei\lep)
p2
V2,i=T2,\sigma(i)
\sigma\inSp
λ1,K,W(G)=(\ker(V1,i
p+1 | |
)) | |
i=1 |
K1,\ldots,Kp+1
W1,\ldots,Wp+1
(λ1(i))
p+1 | |
i=1 |
λ1(i)=\begin{cases}0&\ker(V1,i)=Kp+1,\\j&\ker(V1,i)=Wjforsome1\lej\lep+1,\end{cases}
and
λ2,W,K(G)=(\ker(V2,i
p+1 | |
)) | |
i=1 |
W1,\ldots,Wp+1
K1,\ldots,Kp+1
(λ2(i))
p+1 | |
i=1 |
,
λ2(i)=\begin{cases}0&\ker(V2,i)=G,\\j&\ker(V2,i)=Kjforsome1\lej\lep+1.\end{cases}
It is adequate to view the TKTs
λ1,K,W(G)\sim\varkappa1,H,U(G)
λ2,W,K(G)\sim\varkappa2,U,H(G)
\begin{align} W | |
λ1(i) |
&=\ker(V1,i)=\ker(T1,\hat{\tau
(i)})=U | |
\varkappa1(\hat{\tau |
-1 | |
(i))}=W | |
\tilde{\sigma |
(\varkappa1(\hat{\tau}(i)))}
\\ K | |
λ2(i) |
&=\ker(V2,i)=\ker(T2,\hat{\sigma
(i)})=H | |
\varkappa2(\hat{\sigma |
-1 | |
(i))}=K | |
\tilde{\tau |
(\varkappa2(\hat{\sigma}(i)))} \end{align}
the relations between
λ1
\varkappa1
λ2
\varkappa2
-1 | |
λ | |
1=\tilde{\sigma} |
\circ\varkappa1\circ\hat{\tau}
-1 | |
λ | |
2=\tilde{\tau} |
\circ\varkappa2\circ\hat{\sigma}
Therefore,
λ=(λ1,λ2)
Sp x Sp | |
\varkappa |
\varkappa=(\varkappa1,\varkappa2)
((\sigma,\tau),(\mu1,\mu2))\mapsto\left(\tilde{\sigma}-1\circ\mu1\circ\hat\tau,\tilde{\tau}-1\circ\mu2\circ\hat\sigma\right)
of the product of two symmetric groups
Sp x Sp
\{1,\ldots,p+1\}\to\{0,1,\ldots,p+1\}
\hat{\pi}\inSp+1
\tilde{\pi}\inSp+2
\pi\inSp
\hat{\pi}(p+1)=\tilde{\pi}(p+1)=p+1
\tilde{\pi}(0)=0
H0=K0=G,Kp+1=Hp+1,U0=W0=Hp+1,
Wp+1=Up+1=\Phi(G).
Definition. The orbit
Sp x Sp | |
\varkappa(G)=\varkappa |
\varkappa=(\varkappa1,\varkappa2)
G
The Artin transfer
T2,i:G\toUi/Ui'
T2,i
=\tilde{T} | |
Hj,Ui |
\circT1,j
\tilde{T} | |
Hj,Ui |
:Hj/Hj'\toUi/Ui'
Hj
Ui
T1,j:G\toHj/Hj'.
There are two options regarding the intermediate subgroups
U1,\ldots,Up
Hp+1
Up+1=\Phi(G)
H1,\ldots,Hp+1
This causes restrictions for the transfer kernel type
\varkappa2(G)
\ker(T2,i
)=\ker(\tilde{T} | |
Hj,Ui |
\circT1,j)\supset\ker(T1,j),
and thus
\foralli\in\{1,\ldots,p\}: \ker(T2,i)\supset\ker(T1,p+1).
But even
\ker(T2,p+1)\supset\left
p+1 | |
\langlecup | |
j=1 |
\ker(T1,j)\right\rangle.
Furthermore, when
G=\langlex,y\rangle
xp\notinG',yp\inG',
xyk-1(1\lek\lep)
p2
G'
\ker(T2,i)
p
\ker(T1,j)
Ui<Hj<G
xyk-1\in\ker(T2,i)
1\lei,k\lep
\varkappa1(p+1)=p+1
xyk-1\in\ker(T2,p+1)
1\lek\lep
p+1 | |
\varkappa | |
1=((p+1) |
)
\varkappa1(j)=p+1
1\lej\lep+1
The common feature of all parent-descendant relations between finite p-groups is that the parent
\pi(G)
G/N
G
N.
\phi:G\to\tilde{G}
\ker(\phi)=N.
\tilde{G}=\phi(G)
G
In the following sections, this point of view will be taken, generally for arbitrary groups, not only for finite p-groups.
Proposition. Suppose
A
\phi:G\toA
\omega:G\toG/G'
\tilde{\phi}:G/G'\toA
\phi=\tilde{\phi}\circ\omega
\ker(\tilde{\phi})=\ker(\phi)/G'
Proof. This statement is a consequence of the second Corollary in the article on the induced homomorphism. Nevertheless, we give an independent proof for the present situation: the uniqueness of
\tilde{\phi}
\phi=\tilde{\phi}\circ\omega,
x\inG
\tilde{\phi}(xG')=\tilde{\phi}(\omega(x))=(\tilde{\phi}\circ\omega)(x)=\phi(x),
\tilde{\phi}
x,y\inG
\begin{align} \tilde{\phi}\left(xG' ⋅ yG'\right)&=\tilde{\phi}((xy)G')=\phi(xy)=\phi(x) ⋅ \phi(y)=\tilde{\phi}(xG') ⋅ \tilde{\phi}(xG')\ \phi([x,y])&=\phi\left(x-1y-1xy\right)=\phi(x-1)\phi(y-1)\phi(x)\phi(y)=[\phi(x),\phi(y)]=1&&Aisabelian. \end{align}
Thus, the commutator subgroup
G'\subset\ker(\phi)
\tilde{\phi}
\begin{align} xG'=yG'&\Longrightarrowy-1x\inG'\subset\ker(\phi)\\ &\Longrightarrow1=\phi(y-1x)=\tilde{\phi}(y-1xG')=\tilde{\phi}(yG')-1 ⋅ \tilde{\phi}(xG')\\ &\Longrightarrow\tilde{\phi}(xG')=\tilde{\phi}(yG') \end{align}
Proposition. Assume
G,\tilde{G},\phi
\tilde{H}=\phi(H)
H.
\tilde{H}
H.
\phi
\tilde{\phi}:H/H'\to\tilde{H}/\tilde{H}'
\tilde{H}/\tilde{H}'
H/H'.
\ker(\phi)\leH'
\tilde{\phi}
Proof. This claim is a consequence of the Main Theorem in the article on the induced homomorphism. Nevertheless, an independent proof is given as follows: first, the image of the commutator subgroup is
\phi(H')=\phi([H,H])=\phi(\langle[u,v]|u,v\inH\rangle)=\langle[\phi(u),\phi(v)]\midu,v\inH\rangle=[\phi(H),\phi(H)]=\phi(H)'=\tilde{H}'.
Second, the epimorphism
\phi
\phi|H:H\to\tilde{H}
(\omega\tilde{H
H/H'
\tilde{\phi}:H/H'\to\tilde{H}/\tilde{H}'
\tilde{\phi}\circ\omegaH=\omega\tilde{H
\tilde{H}/\tilde{H}'\simeq(H/H')/\ker(\tilde{\phi})
\tilde{\phi}
\ker(\tilde{\phi})=(H' ⋅ \ker(\phi))/H'
Finally, if
\ker(\phi)\leH'
\tilde{\phi}
\ker(\tilde{\phi})=H'/H'=1
Definition.[15] Due to the results in the present section, it makes sense to define a partial order on the set of abelian type invariants by putting
\tilde{H}/\tilde{H}'\preceqH/H'
\tilde{H}/\tilde{H}'\simeq(H/H')/\ker(\tilde{\phi})
\tilde{H}/\tilde{H}'=H/H'
\tilde{H}/\tilde{H}'\simeqH/H'
Proposition. Assume
G,\tilde{G},\phi
\tilde{H}=\phi(H)
n.
TG,H:G\toH/H'
T\tilde{G,\tilde{H}}:\tilde{G}\to\tilde{H}/\tilde{H}'
\ker(\phi)\leH
H
G
\tilde{H}
\tilde{G}
\phi(\ker(TG,H))\subset\ker(T\tilde{G,\tilde{H}}).
\ker(\phi)\leH'
\phi(\ker(TG,H))=\ker(T\tilde{G,\tilde{H}})
Proof. Let
(g1,\ldots,gn)
H
G
n | |
G=sqcup | |
i=1 |
giH.
Consider the image of this disjoint union, which is not necessarily disjoint,
n | |
\phi(G)=cup | |
i=1 |
\phi(gi)\phi(H),
and let
j,k\in\{1,\ldots,n\}.
\begin{align} \phi(gj)\phi(H)=\phi(gk)\phi(H)&\Longleftrightarrow
-1 | |
\phi(H)=\phi(g | |
j) |
\phi(gk)\phi(H)=
-1 | |
\phi(g | |
j |
gk)\phi(H)\\ &\Longleftrightarrow
-1 | |
\phi(g | |
j |
gk)=\phi(h)&&forsomeh\inH\\ &\Longleftrightarrow\phi(h-1
-1 | |
g | |
j |
gk)=1\ &\Longleftrightarrowh-1
-1 | |
g | |
j |
gk\in\ker(\phi)\subsetH\\ &\Longleftrightarrow
-1 | |
g | |
j |
gk\inH\\ &\Longleftrightarrowj=k\\ \end{align}
Let
\tilde{\phi}:H/H'\to\tilde{H}/\tilde{H}'
\tilde{\phi}(TG,H(x))=\tilde{\phi}\left
n | |
(\prod | |
i=1 |
-1 | |
g | |
\pix(i) |
xgi ⋅ H'\right
n | |
)=\prod | |
i=1 |
\phi\left
(g | |
\pix(i) |
\right)-1\phi(x)\phi(gi) ⋅ \phi(H').
Since
\phi(H')=\phi(H)'=\tilde{H}'
T\tilde{G,\tilde{H}}(\phi(x))
(\phi(g1),\ldots,\phi(gn))
\tilde{H}
\tilde{G}
\ker(\phi)\subsetH.
\tilde{\phi}\circTG,H=T\tilde{G,\tilde{H}}\circ\phi.
\ker(\phi)\subsetH
\phi(\ker(TG,H))\subset\ker(T\tilde{G,\tilde{H}}).
Finally, if
\ker(\phi)\subsetH'
\tilde{\phi}
TG,H=\tilde{\phi}-1\circT\tilde{G,\tilde{H}}\circ\phi
\phi-1\left(\ker(T\tilde{G,\tilde{H}})\right)\subset\ker(TG,H).
Combining the inclusions we have:
\begin{align} \begin{cases}\phi(\ker(TG,H))\subset\ker(T\tilde{G,\tilde{H}})\ \phi-1\left(\ker(T\tilde{G,\tilde{H}})\right)\subset\ker(TG,H)\end{cases}&\Longrightarrow\begin{cases}\phi(\ker(TG,H))\subset\ker(T\tilde{G,\tilde{H}})\ \phi\left(\phi-1\left(\ker(T\tilde{G,\tilde{H}})\right)\right)\subset\phi(\ker(TG,H))\end{cases}\\[8pt] &\Longrightarrow\phi\left(\phi-1\left(\ker(T\tilde{G,\tilde{H}})\right)\right)\subset\phi(\ker(TG,H))\subset\ker(T\tilde{G,\tilde{H}})\\[8pt] &\Longrightarrow\ker(T\tilde{G,\tilde{H}})\subset\phi(\ker(TG,H))\subset\ker(T\tilde{G,\tilde{H}})\\[8pt] &\Longrightarrow\phi(\ker(TG,H))=\ker(T\tilde{G,\tilde{H}}) \end{align}
Definition.[15] In view of the results in the present section, we are able to define a partial order of transfer kernels by setting
\ker(TG,H)\preceq\ker(T\tilde{G,\tilde{H}})
\phi(\ker(TG,H))\subset\ker(T\tilde{G,\tilde{H}}).
Assume
G,\tilde{G},\phi
G/G'
\tilde{G}/\tilde{G}'
(Hi)i\in
G'
i\inI
\begin{align} \tilde{Hi}&:=\phi(Hi)\\ Ti&:=
T | |
G,Hi |
:G\toHi/Hi'\\ \tilde{Ti}&:=T\tilde{G,\tilde{Hi}}:\tilde{G}\to\tilde{Hi}/\tilde{Hi}' \end{align}
Take
J
I
\varkappaH(G)=(\ker(Tj))j\in
G
(Hj)j\in
\tauH(G)=(Hj/Hj')j\in,
G
(Hj)j\in
Due to the rules for singulets, established in the preceding two sections, these multiplets of TTTs and TKTs obey the following fundamental inheritance laws:
Inheritance Law I. If
\ker(\phi)\le\capj\inHj
\tau\tilde{H
\tilde{Hj}/\tilde{Hj}'\preceqHj/Hj'
j\inJ
\varkappaH(G)\preceq\varkappa\tilde{H
\ker(Tj)\preceq\ker(\tilde{Tj})
j\inJ
Inheritance Law II. If
\ker(\phi)\le\capj\inHj'
\tau\tilde{H
\tilde{Hj}/\tilde{Hj}'=Hj/Hj'
j\inJ
\varkappaH(G)=\varkappa\tilde{H
\ker(Tj)=\ker(\tilde{Tj})
j\inJ
A further inheritance property does not immediately concern Artin transfers but will prove to be useful in applications to descendant trees.
Inheritance Law III. Assume
G,\tilde{G},\phi
\sigma\inAut(G).
\sigma(\ker(\phi))\subset\ker(\phi)
\tilde{\sigma}:\tilde{G}\to\tilde{G}
\phi\circ\sigma=\tilde{\sigma}\circ\phi
\sigma(\ker(\phi))=\ker(\phi),
\tilde{\sigma}\inAut(\tilde{G}).
Proof. Using the isomorphism
\tilde{G}=\phi(G)\simeqG/\ker(\phi)
\begin{cases}\tilde{\sigma}:\tilde{G}\to\tilde{G}\ \tilde{\sigma}(g\ker(\phi)):=\sigma(g)\ker(\phi)\end{cases}
First we show this map is well-defined:
\begin{align} g\ker(\phi)=h\ker(\phi)&\Longrightarrowh-1g\in\ker(\phi)\\ &\Longrightarrow\sigma(h-1g)\in\sigma(\ker(\phi))\\ &\Longrightarrow\sigma(h-1g)\in\ker(\phi)&&\sigma(\ker(\phi))\subset\ker(\phi)\\ &\Longrightarrow\sigma(h-1)\sigma(g)\in\ker(\phi)\\ &\Longrightarrow\sigma(g)\ker(\phi)=\sigma(h)\ker(\phi) \end{align}
The fact that
\tilde{\sigma}
\phi\circ\sigma=\tilde{\sigma}\circ\phi
And if
\sigma(\ker(\phi))=\ker(\phi)
\tilde{\sigma}
\begin{align} \tilde{\sigma}(g\ker(\phi))=\ker(\phi)&\Longrightarrow\sigma(g)\ker(\phi)=\ker(\phi)\\ &\Longrightarrow\sigma(g)\in\ker(\phi)\\ &\Longrightarrow\sigma-1(\sigma(g))\in\sigma-1(\ker(\phi))\\ &\Longrightarrowg\in\sigma-1(\ker(\phi))\\ &\Longrightarrowg\in\ker(\phi)&&\sigma-1(\ker(\phi))\subset\ker(\phi)\\ &\Longrightarrowg\ker(\phi)=\ker(\phi) \end{align}
Let
\omega:G\toG/G'
\bar{\sigma}\inAut(G/G')
\omega\circ\sigma=\bar{\sigma}\circ\omega
\forallg\inG: \bar{\sigma}(gG')=\bar{\sigma}(\omega(g))=\omega(\sigma(g))=\sigma(g)G',
The reason for the injectivity of
\bar{\sigma}
\sigma(g)G'=\bar{\sigma}(gG')=G' ⇒ \sigma(g)\inG' ⇒ g=\sigma-1(\sigma(g))\inG',
since
G'
G
Definition.
G
\sigma\inAut(G)
G/G'
g\inG: \sigma(g)G'=\bar{\sigma}(gG')=g-1G'\Longleftrightarrow\sigma(g)g\inG'.
The Inheritance Law III asserts that, if
G
\sigma(\ker(\phi))=\ker(\phi)
\tilde{G}
\tilde{\sigma}
\phi
\sigma(g)G'=\bar{\sigma}(gG')=g-1G'
\forallx=\phi(g)\in\phi(G)=\tilde{G}: \tilde{\sigma}(x)\tilde{G}'=\tilde{\sigma}(\phi(g))\tilde{G}'=\phi(\sigma(g))\phi(G')=\phi(g-1)\phi(G')=\phi(g)-1\tilde{G}'=x-1\tilde{G}'.
In this section, the results concerning the inheritance of TTTs and TKTs from quotients in the previous section are applied to the simplest case, which is characterized by the following
Assumption. The parent
\pi(G)
G
\pi(G)=G/N
G
N=\gammac(G)\triangleleftG
G
c
G
\pi
G
\pi(G)=G/\gammac(G)
\ker(\pi)=\gammac(G)
Under this assumption,the kernels and targets of Artin transfers turn out to be compatible with parent-descendant relations between finite p-groups.
Compatibility criterion. Let
p
G
c=cl(G)\ge2
G
\pi(G)
\tau(\pi(G))\preceq\tau(G)
\varkappa(G)\preceq\varkappa(\pi(G))
The simple reason for this fact is that, for any subgroup
G'\leH\leG
\ker(\pi)=\gammac(G)\le\gamma2(G)=G'\leH
c\ge2
For the remaining part of this section, the investigated groups are supposed to be finite metabelian p-groups
G
G/G'
2
(p,p)
Partial stabilization for maximal class. A metabelian p-group
G
cc(G)=1
c=cl(G)\ge3
p
\tau(G)
\varkappa(G)
\pi(G)
p\ge3
\tau(G)i=(p,p)
\varkappa(G)i=0
2\lei\lep+1
This criterion is due to the fact that
c\ge3
\ker(\pi)=\gammac(G)\le\gamma3(G)=Hi'
p
H2,\ldots,Hp+1
G
The condition
c\ge3
p\ge3
p
3 | |
G=G | |
0(0,1) |
p3
p2
c=2
p
\varkappa=(1p+1)
\varkappa=(0p+1)
\pi(G)
p
(p,p)
p=2
2
1
c=2
3 | |
G=G | |
0(0,1) |
\varkappa=(123)
3 | |
G=G | |
0(0,0) |
\varkappa=(023)
\pi(G)=C2 x C2
\varkappa=(000)
Total stabilization for maximal class and positive defect.
A metabelian p-group
G
cc(G)=1
c=m-1=cl(G)\ge4
m\ge5
p+1
\tau(G)
\varkappa(G)
\pi(G)
k=k(G)\ge1
k\ge1
p\ge3
\varkappa(G)i=0
1\lei\lep+1
This statement can be seen by observing that the conditions
m\ge5
k\ge1
\ker(\pi)=\gammam-1(G)\le\gammam-k(G)\leHi'
p+1
H1,\ldots,Hp+1
G
The condition
k\ge1
c\ge4
c+1 | |
G=G | |
0(0,1) |
\varkappa=(10p)
c+1 | |
G=G | |
0(1,0) |
\varkappa=(20p)
k=0
\varkappa=(0p+1)
c | |
\pi(G)=G | |
0(0,0) |
Partial stabilization for non-maximal class.
Let
p=3
G
G/G'\simeq(3,3)
cc(G)\ge2
c=cl(G)\ge4
\tau(G)
\varkappa(G)
\pi(G)
This criterion is justified by the following consideration. If
c\ge4
\ker(\pi)=\gammac(G)\le\gamma4(G)\leHi'
H3,H4
G
The condition
c\ge4
3
c=3
G\in\{\langle243,3\rangle,\langle243,6\rangle,\langle243,8\rangle\}
\varkappa\in\{(0043),(0122),(2034)\}
\varkappa=(0000)
3 | |
\pi(G)=G | |
0(0,0) |
Total stabilization for non-maximal class and cyclic centre.
Again, let
p=3
G
G/G'\simeq(3,3)
cc(G)\ge2
c=cl(G)\ge4
\zeta1(G)
\tau(G)
\varkappa(G)
\pi(G)
The reason is that, due to the cyclic centre, we have
\ker(\pi)=\gammac(G)=\zeta1(G)\leHi'
H1,\ldots,H4
G
The condition of a cyclic centre is indeed necessary for total stabilization, since for a group with bicyclic centre there occur two possibilities.Either
\gammac(G)=\zeta1(G)
\gammac(G)
H2'
\gammac(G)<\zeta1(G)
H1'
Summarizing, we can say that the last four criteria underpin the fact that Artin transfers provide a marvellous tool for classifying finite p-groups.
In the following sections, it will be shown how these ideas can be applied for endowing descendant trees with additional structure, and for searching particular groups in descendant trees by looking for patterns defined by the kernels and targets of Artin transfers. These strategies of pattern recognition are useful in pure group theory and in algebraic number theory.
This section uses the terminology of descendant trees in the theory of finite p-groups.In Figure 4, a descendant tree with modest complexity is selected exemplarily to demonstrate how Artin transfers provide additional structure for each vertex of the tree.More precisely, the underlying prime is
p=3
3
2
l{B}(7)
l{B}(5)
l{B}(6)
l{B}(7)
l{B}(8)
l{B}(j)\simeql{B}(7)
j\ge9
l{B}(j)\simeql{B}(8)
j\ge10
3
R=\langle243,6\rangle
|R|=35=243
6
l{T}(R)
2
l{T}2(R)
\varkappa
\tau(1)
1
2
(3,3)
\tau=[A(3,c),(3,3,3),(9,3),(9,3)]
\tau(1)=A(3,c)
3
3c
\tau(2)=(3,3,3)\hat{=}(13)
\tau(3)=\tau(4)=(9,3)\hat{=}(21)
3
2
3n
c=n-2
For searching a particular group in a descendant tree by looking for patterns defined by the kernels and targets of Artin transfers, it is frequently adequate to reduce the number of vertices in the branches of a dense tree with high complexity by sifting groups with desired special properties, for example
\sigma
The result of such a sieving procedure is called a pruned descendant tree with respect to the desired set of properties.However, in any case, it should be avoided that the main line of a coclass tree is eliminated, since the result would be a disconnected infinite set of finite graphs instead of a tree.For example, it is neither recommended to eliminate all
\sigma
\varkappa=(0122)
2 | |
l{T} | |
\ast |
(R)
\varkappa=(2122)
\sigma
\varkappa=(1122)
\tau(1)=(43)
The oldest example of searching for a finite p-group by the strategy of pattern recognition via Artin transfers goes back to 1934, when A. Scholz and O. Taussky[18] tried to determine the Galois group
infty | |
G=G | |
3 |
infty | |
(K)=Gal(F | |
3 |
(K)|K)
3
3
infty | |
F | |
3 |
(K)
K=\Q(\sqrt{-9748}).
2(K)| | |
Q=G/G''=G | |
3 |
K)
G
3
2(K) | |
F | |
3 |
K
78
3
infty | |
G=G | |
3 |
(K)
3
3(K)| | |
G | |
3 |
K)
dl(G)=3
3
K
3
3(K) | |
F | |
3 |
K
1 | 9 | \langle9,2\rangle | (0000) | [(1)(1)(1)(1)] | 3 | 3 | 3/2;3/3;1/1 | |
2 | 27 | \langle27,3\rangle | (0000) | [(12)(12)(12)(12)] | 2 | 4 | 4/1;7/5 | |
3 | 243 | \langle243,8\rangle | (2034) | [(21)(21)(21)(21)] | 1 | 3 | 4/4 | |
4 | 729 | \langle729,54\rangle | (2034) | [(21)(22)(21)(21)] | 2 | 4 | 8/3;6/3 | |
5 | 2187 | \langle2187,302\rangle | (2334) | [(21)(32)(21)(21)] | 0 | 3 | 0/0 | |
5 | 2187 | \langle2187,306\rangle | (2434) | [(21)(32)(21)(21)] | 0 | 3 | 0/0 | |
5 | 2187 | \langle2187,303\rangle | (2034) | [(21)(32)(21)(21)] | 1 | 4 | 5/2 | |
5 | 6561 | \langle729,54\rangle-\#2;2 | (2334) | [(21)(32)(21)(21)] | 0 | 2 | 0/0 | |
5 | 6561 | \langle729,54\rangle-\#2;6 | (2434) | [(21)(32)(21)(21)] | 0 | 2 | 0/0 | |
5 | 6561 | \langle729,54\rangle-\#2;3 | (2034) | [(21)(32)(21)(21)] | 1 | 3 | 4/4 | |
6 | 6561 | \langle2187,303\rangle-\#1;1 | (2034) | [(21)(32)(21)(21)] | 1 | 4 | 7/3 | |
6 | 19683 | \langle729,54\rangle-\#2;3-\#1;1 | (2034) | [(21)(32)(21)(21)] | 2 | 4 | 8/3;6/3 |
The search is performed with the aid of the p-group generation algorithm by M. F. Newman[19] and E. A. O'Brien.[20] For the initialization of the algorithm, two basic invariants must be determined. Firstly, the generator rank
d
p=3
d=r3(K)=d(Cl3(K))
3
K
3
Cl3(K)\simeq(12)
K
3
\langle9,2\rangle
l{T}(\langle9,2\rangle)
As explained at the beginning of the section Pattern recognition, we must prune the descendant tree with respect to the invariants TKT and TTT of the
3
G
K
\varkappa\in\{(2334),(2434)\}
\tau=[(21)(32)(21)(21)]
G
\sigma
K
The root
\langle9,2\rangle
\langle27,3\rangle
(12)
\langle9,2\rangle
1
G/\gamma2(G)
G
\langle27,3\rangle
2
G/\gamma3(G)
G
l{T}(\langle27,3\rangle)=l{T}1(\langle27,3\rangle)\sqcupl{T}2(\langle27,3\rangle)
l{T}1(\langle27,3\rangle)
\varkappa=(\ast000)
3
Due to the inheritance property of TKTs, only the single capable descendant
\langle243,8\rangle
3
G/\gamma4(G)
G
\sigma
\langle729,54\rangle
\langle243,8\rangle
4
G/\gamma5(G)
G
This causes the essential bifurcation
l{T}(\langle729,54\rangle)=l{T}2(\langle729,54\rangle)\sqcupl{T}3(\langle729,54\rangle)
l{G}(3,2)
l{G}(3,3)
Q=G/G''
G
Q\in\{\langle2187,302\rangle,\langle2187,306\rangle\}
r=3>2=d
3
G
\sigma
\langle729,54\rangle-\#2;2
\langle729,54\rangle-\#2;6
r=2=d
Finally the termination criterion is reached at the capable vertices
\langle2187,303\rangle-\#1;1\inl{G}(3,2)
\langle729,54\rangle-\#2;3-\#1;1\inl{G}(3,3)
\tau=[(21)(32)(21)(21)]>[(21)(32)(21)(21)]
[(21)(32)(21)(21)]
Pc=G/\gammac+1(G)
3
infty | |
G=G | |
3 |
(K)
K=\Q(\sqrt{-9748})
c=cl(Pc)
\nu=\nu(Pc)
\mu=\mu(Pc)
This section shows exemplarily how commutator calculus can be used for determining the kernels and targets of Artin transfers explicitly. As a concrete example we take the metabelian
3
c
\begin{align}Gc,n(z,w)=&\langlex,y,s2,t3,s3,\ldots,sc\mid{}\\ &
w, y | |
x | |
c |
2s | |
4s |
2s | |
j+3 |
for2\lej\le
3=1,\\ & | |
c-3, s | |
3 |
s2=[y,x], t3=[s2,y], sj=[sj-1,x]for3\lej\lec\rangle,\end{align}
where
c\ge5
3n
n=c+2
0\lew\le1,-1\lez\le1
The transfer target type (TTT) of the group
G=Gc,n(z,w)
c
w,z
\tau=[A(3,c),(3,3,3),(9,3),(9,3)]
The transfer kernel type (TKT) of the group
G=Gc,n(z,w)
c
w,z
\varkappa=(0122)
w=z=0
\varkappa=(2122)
w=0,z=\pm1
\varkappa=(1122)
w=1,z=0
\varkappa\in\{(4122),(3122)\}
w=1,z=\pm1
z
These statements can be deduced by means of the following considerations.
As a preparation, it is useful to compile a list of some commutator relations, starting with those given in the presentation,
[a,x]=1
a\in\{sc,t3\}
[a,y]=1
a\in\{s3,\ldots,sc,t3\}
\zeta1(G)=\langlesc,t3\rangle
[a,xy]=[a,y] ⋅ [a,x] ⋅ [[a,x],y]
[a,y2]=[a,y]1+y
[s2,xy]=s3t3
[
2]=s | |
s | |
3t |
2 | |
3 |
[sj,xy]=[
2]=[ | |
s | |
j,xy |
sj,x]=sj+1
j\ge3
The maximal subgroups of
G
\begin{align} H1&=\langley,G'\rangle\\ H2&=\langlex,G'\rangle\\ H3&=\langlexy,G'\rangle\\ H4&=\langlexy2,G'\rangle\\ \end{align}
Their derived subgroups are crucial for the behavior of the Artin transfers. By making use of the general formula
hi-1 | |
H | |
i'=(G') |
Hi=\langlehi,G'\rangle
G'=\langles2,t3,s3,\ldots,sc\rangle
\begin{align}H1'&=\left\langle
y-1 | |
s | |
2 |
\right\rangle=\left\langlet3\right\rangle\\ H2'&=\left\langle
x-1 | |
s | |
2 |
x-1 | |
,\ldots,s | |
c-1 |
\right\rangle=\left\langles3,\ldots,sc\right\rangle\\ H3'&=\left\langle
xy-1 | |
s | |
2 |
xy-1 | |
,\ldots,s | |
c-1 |
\right\rangle=\left\langles3t3,s4,\ldots,sc\right\rangle\\ H4'&=\left\langle
xy2-1 | |
s | |
2 |
xy2-1 | |
,\ldots,s | |
c-1 |
\right\rangle=\left\langles3t
2,s | |
4,\ldots,s |
c\right\rangle \end{align}
Note that
H1
H1'=\langlet3\rangle
\zeta1(G)=\langlesc,t3\rangle
As the first main result, we are now in the position to determine the abelian type invariants of the derived quotients:
H1/H1'=\langley,s2,\ldots,sc\rangleH1'/H1'\simeqA(3,c),
the unique quotient which grows with increasing nilpotency class
c
ord(y)=ord(s2)=3m
c=2m
ord(y)=3m+1
m | |
,ord(s | |
2)=3 |
c=2m+1
\begin{align} H2/H2'&=\langlex,s2,t3\rangleH2'/H2'\simeq(3,3,3)\ H3/H3'&=\langlexy,s2,t3\rangleH3'/H3'\simeq(9,3)\\ H4/H4'&=\langle
2,s | |
xy | |
2,t |
3\rangleH4'/H4'\simeq(9,3) \end{align}
since generally
ord(s2)=ord(t3)=3
ord(x)=3
H2
ord(xy)=ord(xy2)=9
H3
H4
Now we come to the kernels of the Artin transfer homomorphisms
Ti:G\toHi/Hi'
\tilde{T}i:G/G'\toHi/Hi'
\tilde{T}i(gG')
gG'\inG/G'
g\equivxjy\ell\pmod{G'}, j,\ell\in\{-1,0,1\}.
First, we exploit outer transfers as much as possible:
\begin{align} x\notinH1& ⇒
3H | |
\tilde{T} | |
1'=s |
wH | |
1' |
\\ y\notinH2& ⇒
3H | |
\tilde{T} | |
2'=s |
2s | |
4s |
zH | |
2'=1 ⋅ |
H2'\\ x,y\notinH3,H4& ⇒ \begin{cases}
3H | |
\tilde{T} | |
i'=s |
wH | |
i'=1 ⋅ |
Hi'\ \tilde{T}i(yG')
3H | |
=y | |
i'=s |
2s | |
4s |
zH | |
i'=s |
2H | |
i'\end{cases} |
&&3\lei\le4 \end{align}
Next, we treat the unavoidable inner transfers, which are more intricate. For this purpose, we use the polynomial identity
X2+X+1=(X-1)2+3(X-1)+3
to obtain:
\begin{align} y\inH1& ⇒
1+x+x2 | |
\tilde{T} | |
1(yG')=y |
3+3(x-1)+(x-1)2 | |
H | |
1'=y |
3 ⋅ [ | |
H | |
1'=y |
y,x]3 ⋅ [[y,x],x]H1'=
2s | |
s | |
4s |
3s | |
3H |
1'=s
3s | |
4s |
zH | |
1'=s |
zH | |
1' |
\\ x\inH2& ⇒
1+y+y2 | |
\tilde{T} | |
2(xG')=x |
3+3(y-1)+(y-1)2 | |
H | |
2'=x |
3 ⋅ [ | |
H | |
2'=x |
x,y]3 ⋅ [[x,y],y]H2'=s
-3 | |
2 |
-1 | |
t | |
3 |
H2'=t
-1 | |
3 |
H2' \end{align}
Finally, we combine the results: generally
\tilde{T}i(gG')=\tilde{T}
\ell | |
i(yG') |
,
and in particular,
\begin{align} \tilde{T}1(gG')
wj+z\ell | |
&=s | |
c |
H1'\\ \tilde{T}2(gG')
-j | |
&=t | |
3 |
H2'\\ \tilde{T}i(gG')
2\ell | |
&=s | |
3 |
Hi'&&3\lei\le4 \end{align}
To determine the kernels, it remains to solve the equations:
wj+z\ell | |
\begin{align} s | |
c |
H1'=H1'& ⇒ \begin{cases}arbitraryj,\ellandw=z=0\ \ell=0,arbitraryjandw=0,z=\pm1\ j=0,arbitrary\ellandw=1,z=0\ j=\mp\ell,w=1,z=\pm1\end{cases}
-j | |
\\ t | |
3 |
H2'=H2'& ⇒ j=0witharbitrary\ell
2\ell | |
\\ s | |
3 |
Hi'=Hi'& ⇒ \ell=0witharbitraryj&&3\lei\le4 \end{align}
The following equivalences, for any
1\lei\le4
j,\ell
\Leftrightarrow\ker(Ti)=\langlex,y,G'\rangle=G\Leftrightarrow\varkappa(i)=0
j=0
\ell\Leftrightarrow\ker(Ti)=\langley,G'\rangle=H1\Leftrightarrow\varkappa(i)=1
\ell=0
j\Leftrightarrow\ker(Ti)=\langlex,G'\rangle=H2\Leftrightarrow\varkappa(i)=2
j=\ell\Leftrightarrow\ker(Ti)=\langlexy,G'\rangle=H3\Leftrightarrow\varkappa(i)=3
j=-\ell\Leftrightarrow\ker(Ti)=\langlexy-1,G'\rangle=H4\Leftrightarrow\varkappa(i)=4
Consequently, the last three components of the TKT are independent of the parameters
w,z,
The aim of this section is to present a collection of structured coclass trees (SCTs) of finite p-groups with parametrized presentations and a succinct summary of invariants.The underlying prime
p
p\in\{2,3,5\}
r\ge1
\sigma
We refrain from giving justifications for invariants, since the way how invariants are derived from presentations was demonstrated exemplarily in the section on commutator calculus
For each prime
p\in\{2,3,5\}
l{T}1(\langle4,2\rangle)
p=2,l{T}1(\langle9,2\rangle)
p=3
l{T}1(\langle25,2\rangle)
p=5
5
The
2
1
\begin{align}Gc,n(z,w)=&\langlex,y,s2,\ldots,sc\mid{}\\ &
w, y | |
x | |
c |
2=s | |
j+1 |
sj+2for2\lej\le
2=s | |
c-2, s | |
c,\\ & |
s2=[y,x], sj=[sj-1,x]=[sj-1,y]for3\lej\lec\rangle,\end{align}
where the nilpotency class is
c\ge3
2n
n=c+1
w,z
1
1
1
3
\tau=[(12),(12),A(2,c)]
c
A(2,c)
\varkappa=(210)
w=z=0
\varkappa=(213)
w=z=1
\varkappa=(211)
w=1,z=0
\tau=[(1),(1),(1)]
\varkappa=(000)
\tau=[(2),(2),(2)]
\varkappa=(123)
The
3
1
c,n | |
\begin{align}G | |
a(z,w)= |
&\langlex,y,s2,t3,s3,\ldots,sc\mid{}\\ &
w, y | |
x | |
c |
2s | |
4s |
z, t | |
3=s |
2s | |
j+3 |
for2\lej\le
2,\\ & | |
c-3, s | |
c |
s2=[y,x], t3=[s2,y], sj=[sj-1,x]for3\lej\lec\rangle,\end{align}
where the nilpotency class is
c\ge5
3n
n=c+1
a,w,z
2
2
1
7
\tau=[A(3,c-a),(12),(12),(12)]
c
a
\varkappa=(0000)
a=w=z=0,\varkappa=(1000)
a=0,w=1,z=0,\varkappa=(2000)
a=w=0,z=\pm1
\varkappa=(0000)
a=1,w\in\{-1,0,1\},z=0
\tau=[(1),(1),(1),(1)]
9
\tau=[(12),(2),(2),(2)]
\varkappa=(1111)
3
A9
\tau=[(13),(12),(12),(12)]
\sigma
The metabelian
5
1
c,n | |
\begin{align}G | |
a(z,w)= |
&\langlex,y,s2,t3,s3,\ldots,sc\mid{}\\ &
w, y | |
x | |
c |
z, t | |
3=s |
a,\\ & | |
c |
s2=[y,x], t3=[s2,y], sj=[sj-1,x]for3\lej\lec\rangle,\end{align}
where the nilpotency class is
c\ge3
5n
n=c+1
a,w,z
3
4
3
67
\tau=[A(5,c-k),(12)5]
c
k
\varkappa=(06)
a=w=z=0,\varkappa=(105)
a=0,w=1,z=0,\varkappa=(205)
a=w=0,z\ne0
\varkappa=(06)
a\ne0
\tau=[(1)6]
25
\tau=[(12),(2)5]
\varkappa=(16)
\langle15625,631\rangle
\tau=[(15),(12)5]
\sigma
Three coclass trees,
l{T}2(\langle243,6\rangle)
l{T}2(\langle243,8\rangle)
l{T}2(\langle729,40\rangle)
p=3
On the tree
l{T}2(\langle243,6\rangle)
3
2
\begin{align}Gc,n(z,w)=&\langlex,y,s2,t3,s3,\ldots,sc\mid{}\\ &
w, y | |
x | |
c |
2s | |
4s |
2s | |
j+3 |
for2\lej\le
3=1,\\ & | |
c-3, s | |
3 |
s2=[y,x], t3=[s2,y], sj=[sj-1,x]for3\lej\lec\rangle,\end{align}
where the nilpotency class is
c\ge5
3n
n=c+2
w,z
2
2
3
18
\tau=[A(3,c),(13),(21),(21)]
c
\varkappa=(0122)
w=z=0
\varkappa=(2122)
w=0,z=\pm1
\varkappa=(1122)
w=1,z=0
\varkappa=(3122)
w=1,z=\pm1
\sigma
On the tree
l{T}2(\langle243,8\rangle)
3
2
\begin{align}Gc,n(z,w)=&\langlex,y,t2,s3,t3,\ldots,tc\mid{}\\ &
3=s | |
y | |
3t |
w, x | |
c |
3=t | |
3t |
2t | |
5t |
2t | |
j+3 |
for2\lej\le
3=1,\\ & | |
c-3, t | |
3 |
t2=[y,x], s3=[t2,x], tj=[tj-1,y]for3\lej\lec\rangle,\end{align}
where the nilpotency class is
c\ge6
3n
n=c+2
w,z
2
2
3
16
\tau=[(21),A(3,c),(21),(21)]
c
\varkappa=(2034)
w=z=0
\varkappa=(2134)
w=0,z=\pm1
\varkappa=(2234)
w=1,z=0
\varkappa=(2334)
w=1,z=\pm1
\sigma
l{T}2(\langle16,3\rangle)
l{T}2(\langle16,4\rangle)
p=2
l{T}2(\langle243,15\rangle)
l{T}2(\langle243,17\rangle)
p=3
l{T}2(\langle16,11\rangle)
p=2
l{T}2(\langle81,12\rangle)
p=3
l{T}3(\langle729,13\rangle)
l{T}3(\langle729,18\rangle)
l{T}3(\langle729,21\rangle)
p=3
l{T}3(\langle32,35\rangle)
l{T}3(\langle64,181\rangle)
p=2
l{T}3(\langle243,38\rangle)
l{T}3(\langle243,41\rangle)
p=3
In algebraic number theory and class field theory, structured descendant trees (SDTs) of finite p-groups provide an excellent tool for
G(K)
K
G(K)
G(K)
For instance, let
p
2 | |
F | |
p(K) |
K
K
p
2 | |
G | |
p(K)| |
K)
K
2
K
infty | |
G | |
p(K)| |
K)
infty | |
F | |
p(K) |
K
Given a sequence of algebraic number fields
K
(r1,r2)
d=d(K)
l{T}
l{G}0(p,r)
l{G}(p,r)
2 | |
G | |
p(K) |
K
V\inl{T}
V\inl{G}0(p,r)
K
2 | |
V=G | |
p(K) |
To be specific, let
p=3
K(d)=\Q(\sqrt{d})
(0,1)
3
(3,3)
3
2 | |
G | |
3(K) |
-106<d<0
-108<d<0
Let us firstly select the two structured coclass trees (SCTs)
l{T}2(\langle243,6\rangle)
l{T}2(\langle243,8\rangle)
V
min\{|d|\mid
2 | |
V=G | |
3(K(d))\} |
V
3
2 | |
G | |
3(K(d)) |
3
GS \uparrow0 | 16627 | 15544 | 21668 | 9748 | 34867 | 17131 | |
ES1 \uparrow1 | 262744 | 268040 | 446788 | 297079 | 370740 | 819743 | |
ES2 \uparrow2 | 4776071 | 1062708 | 3843907 | 1088808 | 4087295 | 2244399 | |
ES3 \uparrow3 | 40059363 | 27629107 | 52505588 | 11091140 | 19027947 | 30224744 | |
ES4 \uparrow4 | 94880548 |
Concerning the periodicity of occurrences of second
3
2 | |
G | |
3(K(d)) |
3
l{B}(6)
l{B}(j)
j\ge8
\varkappa=(3122)
\varkappa=(1122)
\varkappa=(2122)
on the ASCT
l{T}2(\langle243,6\rangle)
\varkappa=(2334)
\varkappa=(2234)
\varkappa=(2134)
on the ASCT
l{T}2(\langle243,8\rangle)
\varkappa=(2334)
< | Total \# | TKT D.10 \varkappa=(3144) \tau=[(21)(13)(21)(21)] G=\langle243,5\rangle | TKT D.5 \varkappa=(1133) \tau=[(21)(13)(21)(13)] G=\langle243,7\rangle | TKT H.4 \varkappa=(4111) \tau=[(13)(13)(13)(21)] G=\langle729,45\rangle | TKT G.19 \varkappa=(2143) \tau=[(21)(21)(21)(21)] G=\langle729,57\rangle |
---|---|---|---|---|---|
b=106 | 2020 | 667 (33.0\%) | 269 (13.3\%) | 297 (14.7\%) | 94 (4.7\%) |
b=107 | 24476 | 7622 (31.14\%) | 3625 (14.81\%) | 3619 (14.79\%) | 1019 (4.163\%) |
b=108 | 276375 | 83353 (30.159\%) | 41398 (14.979\%) | 40968 (14.823\%) | 10426 (3.7724\%) |
In contrast, let us secondly select the sporadic part
l{G}0(3,2)
l{G}(3,2)
\#\{|d|<b\mid
2 | |
V=G | |
3(K(d))\} |
V
3
2 | |
G | |
3(K(d)) |
b
b=108
276375
3
(3,3)
-b<d<0
l{G}0(3,2)
l{G}(3,2)
3
2 | |
G | |
3(K(d)) |
\langle243,5\rangle
\langle243,7\rangle
\langle729,45\rangle
\langle729,57\rangle
Now let
p\in\{3,5,7\}
K(d)=\Q(\sqrt{d})
(0,1)
(p,p)
p5
l{G}0(p,2)
l{G}(p,2)
\Phi6
p6
p>3
\Phi6
p+7
3
\Phi6
3
p=3
4
p>3
\Phi6
\sigma
2
p=3
p+1
p>3
l{G}0(p,2)
2
p\ge3
p>3
\sigma
0
2
We endow the forest
l{G}0(p,2)
min\{|d|\mid
2 | |
V=G | |
p(K(d))\} |
V\inl{G}0(p,2)
p=3
p=5
p=7