Arsinide Explained

An arsinide, arsanide, dihydridoarsenate(1−) or arsanyl compound is a chemical derivative of arsine, where one hydrogen atom is replaced with a metal or cation. The arsinide ion has formula . It can be considered as a ligand with name or arsanido. Few chemists study arsanyl compounds, as they are both toxic and unstable.[1] The IUPAC names are arsanide and dihydridoarsenate(1−). For the ligand the name is arsanido. The neutral group is termed arsanyl.

Formation

Alkali metal arsinides can form by bubbling arsine through a liquid ammonia solution of alkali metal such as sodium, potassium or alkaline earth metal such as calcium.[2]

Arsinides are also formed when arsine reacts with thin layers of alkali metals.

The arsine may reduce some compounds to metals, so for example an attempt to make an indium arsinide results in metallic indium.

Reactions

When heated, metal hydrogen arsinide and metal dihydrogen arsinide compounds lose hydrogen to become a metal arsenide:

[3] With lithium dihydrogen arsinide, it can also lose arsine to become dilithium hydrogen arsinide :

[3] These reactions take place even at room temperature, and result in a discolouration of the original chemical.

Sodium dihydrogen arsinide reacts with alkyl halides RX (where X = F, Cl, Br, I, and R is alkyl) to make dialkylarsine . Potassium dihydrogen arsinide reacts with alkyl halides to make trialkylarsine .[4]

Sodium dihydrogen arsinide reacts with diethyl carbonate to yield the 2-arsaethynolate ion, (analogous with cyanate ion) which can be crystallised with the sodium ion and 18-crown-6.[5]

Arsinides react with water to yield arsine :

[6]

Potassium dihydrogen arsinide reacts with halobenzenes, where X = Cl, Br, I (chlorobenzene, bromobenzene, iodobenzene) to produce benzene, tetraphenyldiarsine and triphenylarsine .[7]

Potassium dihydrogen arsinide reacts with a silyl halide, e.g. chlorosilane , producing trisilylarsine.[8]

Potassium dihydrogen arsinide reacts with and a crown ether resulting in .[9]

List

FormulaNameCrystal systemSpace groupUnit cell (Å)VolumeDensityCommentref
Lithium arsanide
Dilithium arsanidedecomposition at 0°C
Sodium arsanidewhite; decomposition at room temperature
Disodium arsanide
Lithium tetraarsanidoaluminate
(Dipp2Nacnac)Al(AsH2)2 Dipp2Nacnac=HC[C(Me)N(2,6‐''i''Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]2
IDipp⋅AlH2AsH2 IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene)monoclinicI2/acolourless[10]
IDipp⋅AlH(AsH2)2monoclinicI2/aa 18.3591 b 9.0485 c 34.4864 β 91.580°
Potassium arsanidestable to 80°C; decomposition at 90°C
Calcium arsanide
(Dipp2Nacnac)Ga(AsH2)2
IDipp⋅GaH2AsH2monoclinicI2/acolourless
IDipp⋅GaH(AsH2)2monoclinicI2/aa 18.465 b 9.1493 c 34.661 β 91.509°
Th(TrenTRIPS)AsH2Th-As 3.065 Å[11]
U(TrenTRIPS)AsH2U-As 3.004 Å

Related

The hydrogen atoms in the arsinide anion may be substituted by organic or other groups which can then also produce ions, for example by methyl, like in potassium methyl arsinide,[12] or by trimethylsilyl . The doubly bonded ligand =AsH (or) is called arsinidene.

Notes and References

  1. Li. Bin. Bauer. Susanne. Seidl. Michael. Timoshkin. Alexey Y.. Scheer. Manfred. 2019-10-28. Monomeric β‐Diketiminato Group 13 Metal Dipnictogenide Complexes with Two Terminal EH 2 Groups (E=P, As). Chemistry – A European Journal. en. 25. 60. 13714–13718. 10.1002/chem.201903887. 0947-6539. 6899646. 31456252.
  2. Yambushev . Farid Dgamaletdinovich . Methods for the synthesis of arsines and arsine dihalides . 2019. 27. Revista de la Universidad del Zulia. 0041-8811.
  3. Jolly . William L. . The Alkali Metal Salts of Arsine and their Ammoniates. The Reaction of Arsine with Alkali Metals and Alkali Metal Amides . Journal of the American Chemical Society . March 1959 . 81 . 5 . 1029–1033 . 10.1021/ja01514a005.
  4. Brandsma . L. . Björlo . O. . Van Der Kerk-Van Hoof . A. C.H.T.M. . Fission of As-As Bonds in Elemental Arsenic by Alkali Metals in Liquid Ammonia. Preparation of Dialkyl and Trialkyl Arsines . Phosphorus, Sulfur, and Silicon and the Related Elements . January 2000 . 164 . 1 . 83–86 . 10.1080/10426500008045235. 98800171 .
  5. Hinz . Alexander . Goicoechea . Jose M. . The 2-Arsaethynolate Anion: Synthesis and Reactivity Towards Heteroallenes . Angewandte Chemie International Edition . 18 July 2016 . 55 . 30 . 8536–8541 . 10.1002/anie.201602310. 27093942 . 5074235 .
  6. Hummel . S. G. . Zou . Y. . Beyler . C. A. . Grodzinski . P. . Dapkus . P. D. . McManus . J. V. . Zhang . Y. . Skromme . B. J. . Lee . W. I. . Characteristics of GaAs, AlGaAs, and InGaAs materials grown by metalorganic chemical vapor deposition using an on‐demand hydride gas generator . Applied Physics Letters . 23 March 1992 . 60 . 12 . 1483–1485 . 10.1063/1.107278. 1992ApPhL..60.1483H .
  7. Kuo . Harng-Shen . Jolly . William L. . The reaction of potassium dihydrogen arsenide with halobenzenes . Journal of Organometallic Chemistry . August 1971 . 30 . 3 . 361–364 . 10.1016/S0022-328X(00)87519-1.
  8. Book: Jolly . William L. . Norman . Arlan D. . HYDRIDES OF GROUPS IV AND V . 1 August 1967 . en.
  9. Kahoun . Tobias . Synthesis and Coordination Chemistry of Anionic Pnictogenylborane Derivatives . en . 28 September 2020.
  10. Weinhart. Michael A. K.. Seidl. Michael. Timoshkin. Alexey Y.. Scheer. Manfred. 2021-02-15. NHC‐stabilized Parent Arsanylalanes and ‐gallanes. Angewandte Chemie International Edition. en. 60. 7. 3806–3811. 10.1002/anie.202013849. 1433-7851. 7898810. 33197127.
  11. Book: Evans. William J.. The Heaviest Metals: Science and Technology of the Actinides and Beyond. Hanusa. Timothy P.. 2019-01-08. John Wiley & Sons. 978-1-119-30408-1. 114. en.
  12. Watt . George W. . Cappel . Norman O. . Liquid ammonia research in 1937—A review . Journal of Chemical Education . March 1938 . 15 . 3 . 133 . 10.1021/ed015p133. 1938JChEd..15..133W .