Arakelov theory explained

In mathematics, Arakelov theory (or Arakelov geometry) is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.

Background

The main motivation behind Arakelov geometry is the fact there is a correspondence between prime ideals

ak{p}\inSpec(Z)

and finite places

vp:Q*\toR

, but there also exists a place at infinity

vinfty

, given by the Archimedean valuation, which doesn't have a corresponding prime ideal. Arakelov geometry gives a technique for compactifying

Spec(Z)

into a complete space \overline which has a prime lying at infinity. Arakelov's original construction studies one such theory, where a definition of divisors is constructor for a scheme

ak{X}

of relative dimension 1 over

Spec(l{O}K)

such that it extends to a Riemann surface

Xinfty=ak{X}(C)

for every valuation at infinity. In addition, he equips these Riemann surfaces with Hermitian metrics on holomorphic vector bundles over X(C), the complex points of

X

. This extra Hermitian structure is applied as a substitute for the failure of the scheme Spec(Z) to be a complete variety.

Note that other techniques exist for constructing a complete space extending

Spec(Z)

, which is the basis of F1 geometry.

Original definition of divisors

Let

K

be a field,

l{O}K

its ring of integers, and

X

a genus

g

curve over

K

with a non-singular model

ak{X}\toSpec(l{O}K)

, called an arithmetic surface. Also, we let \infty: K \to \mathbb be an inclusion of fields (which is supposed to represent a place at infinity). Also, we will let

Xinfty

be the associated Riemann surface from the base change to

C

. Using this data, we can define a c-divisor as a formal linear combination D = \sum_i k_i C_i + \sum_\infty \lambda_\infty X_\infty where

Ci

is an irreducible closed subset of

ak{X}

of codimension 1,

ki\inZ

, and

λinfty\inR

, and the sum \sum_ represents the sum over every real embedding of

K\toR

and over one embedding for each pair of complex embeddings

K\toC

. The set of c-divisors forms a group

Divc(ak{X})

.

Results

defined an intersection theory on the arithmetic surfaces attached to smooth projective curves over number fields, with the aim of proving certain results, known in the case of function fields,in the case of number fields. extended Arakelov's work by establishing results such as a Riemann-Roch theorem, a Noether formula, a Hodge index theorem and the nonnegativity of the self-intersection of the dualizing sheaf in this context.

Arakelov theory was used by Paul Vojta (1991) to give a new proof of the Mordell conjecture, and by in his proof of Serge Lang's generalization of the Mordell conjecture.

developed a more general framework to define the intersection pairing defined on an arithmetic surface over the spectrum of a ring of integers by Arakelov. developed a theory of positive line bundles and proved a Nakai–Moishezon type theorem for arithmetic surfaces. Further developments in the theory of positive line bundles by and culminated in a proof of the Bogomolov conjecture by and .[1]

Arakelov's theory was generalized by Henri Gillet and Christophe Soulé to higher dimensions. That is, Gillet and Soulé defined an intersection pairing on an arithmetic variety. One of the main results of Gillet and Soulé is the arithmetic Riemann–Roch theorem of, an extension of the Grothendieck–Riemann–Roch theorem to arithmetic varieties. For this one defines arithmetic Chow groups CHp(X) of an arithmetic variety X, and defines Chern classes for Hermitian vector bundles over X taking values in the arithmetic Chow groups. The arithmetic Riemann–Roch theorem then describes how the Chern class behaves under pushforward of vector bundles under a proper map of arithmetic varieties. A complete proof of this theorem was only published recently by Gillet, Rössler and Soulé.

Arakelov's intersection theory for arithmetic surfaces was developed further by . The theory of Bost is based on the use of Green functions which, up to logarithmic singularities, belong to the Sobolev space

2
L
1
. In this context, Bost obtains an arithmetic Hodge index theorem and uses this to obtain Lefschetz theorems for arithmetic surfaces.

Arithmetic Chow groups

An arithmetic cycle of codimension p is a pair (Zg) where Z ∈ Zp(X) is a p-cycle on X and g is a Green current for Z, a higher-dimensional generalization of a Green function. The arithmetic Chow group

\widehat{CH

}_p(X) of codimension p is the quotient of this group by the subgroup generated by certain "trivial" cycles.[2]

The arithmetic Riemann–Roch theorem

The usual Grothendieck–Riemann–Roch theorem describes how the Chern character ch behaves under pushforward of sheaves, and states that ch(f*(E))= f*(ch(E)TdX/Y), where f is a proper morphism from X to Y and E is a vector bundle over f. The arithmetic Riemann–Roch theorem is similar, except that the Todd class gets multiplied by a certain power series. The arithmetic Riemann–Roch theorem states\hat(f_*([E]))=f_*(\hat(E)\widehat^R(T_))where

\hat{ch

} is the arithmetic Chern character.

\hat{Td

} is the arithmetic Todd class

\hat{Td

}^R(E) is

\hat{Td

}(E)(1-\epsilon(R(E)))

See also

References

External links

Notes and References

  1. Leong . Y. K. . July–December 2018 . Shou-Wu Zhang: Number Theory and Arithmetic Algebraic Geometry . 32 . Imprints . 32–36 . The Institute for Mathematical Sciences, National University of Singapore . 5 May 2019.
  2. Manin & Panchishkin (2008) pp.400–401