In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points at which a function output value is maximized and minimized, respectively.[1] While the arguments are defined over the domain of a function, the output is part of its codomain.
Given an arbitrary set a totally ordered set and a function, the
\operatorname{argmax}
S
X
\operatorname{argmax}Sf:=\underset{x\inS}{\operatorname{argmax}}f(x):=\{x\inS~:~f(s)\leqf(x)foralls\inS\}.
If
S=X
S
S
\underset{x}{\operatorname{argmax}}f(x):=\{x~:~f(s)\leqf(x)foralls\inX\}.
\operatorname{argmax}
x
f(x)
\operatorname{Argmax}
In the fields of convex analysis and variational analysis, a slightly different definition is used in the special case where
Y=[-infty,infty]=R\cup\{\pminfty\}
f
infty
S
\operatorname{argmax}Sf:=\varnothing
\operatorname{argmax}Sinfty:=\varnothing
\operatorname{argmax}Sf
\operatorname{argmax}Sf
\operatorname{argmax}Sf:=\left\{x\inS~:~f(x)=\sup{}Sf\right\}
where it is emphasized that this equality involving
\sup{}Sf
f
infty
The notion of
\operatorname{argmin}
\operatorname{argmin}
\underset{x\inS}{\operatorname{argmin}}f(x):=\{x\inS~:~f(s)\geqf(x)foralls\inS\}
are points
x
f(x)
In the special case where
Y=[-infty,infty]=\R\cup\{\pminfty\}
f
-infty
S
\operatorname{argmin}Sf:=\varnothing
\operatorname{argmin}S-infty:=\varnothing
\operatorname{argmin}Sf
f
-infty
\operatorname{argmin}Sf:=\left\{x\inS~:~f(x)=inf{}Sf\right\}.
For example, if
f(x)
1-|x|,
f
1
x=0.
\underset{x}{\operatorname{argmax}}(1-|x|)=\{0\}.
The
\operatorname{argmax}
max
max
maxxf(x)
\{f(x)~:~f(s)\leqf(x)foralls\inS\}.
Like
\operatorname{argmax},
\operatorname{argmax},
\operatorname{max}
f(x)
4x2-x4,
\underset{x}{\operatorname{argmax}}\left(4x2-x4\right)=\left\{-\sqrt{2},\sqrt{2}\right\},
\underset{x}{\operatorname{max}}\left(4x2-x4\right)=\{4\}
\operatorname{argmax}.
Equivalently, if
M
f,
\operatorname{argmax}
\underset{x}{\operatorname{argmax}}f(x)=\{x~:~f(x)=M\}=:f-1(M).
We can rearrange to give the simple identity[3]
f\left(\underset{x}{\operatorname{argmax}}f(x)\right)=maxxf(x).
If the maximum is reached at a single point then this point is often referred to as
\operatorname{argmax},
\operatorname{argmax}
\underset{x\inR
(rather than the singleton set
\{5\}
x(10-x)
25,
x=5.
\operatorname{argmax}
For example
\underset{x\in[0,4\pi]}{\operatorname{argmax}}\cos(x)=\{0,2\pi,4\pi\}
because the maximum value of
\cosx
1,
x=0,2\pi
4\pi.
\underset{x\inR
Functions need not in general attain a maximum value, and hence the
\operatorname{argmax}
\underset{x\inR
x3
\underset{x\inR
\arctan
\pm\pi/2.
\operatorname{argmax}.
\leq,
Y.
x(10-x)=25-(x-5)2\leq25
x-5=0.