In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions,[1] and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix:,,, etc. (This convention is used throughout this article.) This notation arises from the following geometric relationships:when measuring in radians, an angle of radians will correspond to an arc whose length is, where is the radius of the circle. Thus in the unit circle, the cosine of x function is both the arc and the angle, because the arc of a circle of radius 1 is the same as the angle. Or, "the arc whose cosine is " is the same as "the angle whose cosine is ", because the length of the arc of the circle in radii is the same as the measurement of the angle in radians. In computer programming languages, the inverse trigonometric functions are often called by the abbreviated forms,, .[2]
The notations,,, etc., as introduced by John Herschel in 1813, are often used as well in English-language sources, much more than the also established,, – conventions consistent with the notation of an inverse function, that is useful (for example) to define the multivalued version of each inverse trigonometric function:
\tan-1(x)=\{\arctan(x)+\pik\midk\inZ\}~.
The confusion is somewhat mitigated by the fact that each of the reciprocal trigonometric functions has its own name — for example, . Nevertheless, certain authors advise against using it, since it is ambiguous. Another precarious convention used by a small number of authors is to use an uppercase first letter, along with a “” superscript:,,, etc. Although it is intended to avoid confusion with the reciprocal, which should be represented by,, etc., or, better, by,, etc., it in turn creates yet another major source of ambiguity, especially since many popular high-level programming languages (e.g. Mathematica and MAGMA) use those very same capitalised representations for the standard trig functions, whereas others (Python, SymPy, NumPy, Matlab, MAPLE, etc.) use lower-case.
Hence, since 2009, the ISO 80000-2 standard has specified solely the "arc" prefix for the inverse functions.
For example, using in the sense of multivalued functions, just as the square root function
y=\sqrt{x}
y2=x,
y=\arcsin(x)
\sin(y)=x.
x,
-1\leqx\leq1,
y
\sin(y)=x
\sin(0)=0,
\sin(\pi)=0,
\sin(2\pi)=0,
x
\arcsin(x)
The principal inverses are listed in the following table.
Name | Usual notation | Definition | Domain of x | Range of usual principal value (radians) | Range of usual principal value (degrees) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
arcsine | y=\arcsin(x) | -1\leqx\leq1 | -
\leqy\leq
| -90\circ\leqy\leq90\circ | |||||||
arccosine | y=\arccos(x) | -1\leqx\leq1 | 0\leqy\leq\pi | 0\circ\leqy\leq180\circ | |||||||
arctangent | y=\arctan(x) | all real numbers | -
<y<
| -90\circ<y<90\circ | |||||||
arccotangent | y=\arccot(x) | all real numbers | 0<y<\pi | 0\circ<y<180\circ | |||||||
arcsecant | y=\arcsec(x) | {\left\vertx\right\vert}\geq1 | 0\leqy<
or
<y\leq\pi | 0\circ\leqy<90\circor90\circ<y\leq180\circ | |||||||
arccosecant | y=\arccsc(x) | {\left\vertx\right\vert}\geq1 | -
\leqy<0or0<y\leq
| -90\circ\leqy<0\circor0\circ<y\leq90\circ | |||||||
\tan(\arcsec(x))=\sqrt{x2-1},
\tan(\arcsec(x))=\pm\sqrt{x2-1},
If
x
y
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of
2\pi:
k
2\pik,
2\pik+\pi.
2\pik+\pi
2\pik+2\pi.
2\pik,
2\pik+\pi,
2\pik+\pi
2\pik+2\pi.
This periodicity is reflected in the general inverses, where
k
The following table shows how inverse trigonometric functions may be used to solve equalities involving the six standard trigonometric functions. It is assumed that the given values
\theta,
r,
s,
x,
y
k\in\Z
k.
The symbol
\iff
Equation | Solution | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\sin\theta=y | \iff | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' | \theta= | style='border-style: solid none solid none; text-align: right;' | (-1)k | style='border-style: solid none solid none; text-align: left;' | \arcsin(y) | style='border-style: solid none solid none;' | + | style='border-style: solid none solid none;' | style='border-style: solid none solid none; padding-right: 2em;' | \pik | for some k\in\Z | --------------- END: sin θ = x ---------------> | ||
\csc\theta=r | \iff | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' | \theta= | style='border-style: solid none solid none; text-align: right;' | (-1)k | style='border-style: solid none solid none; text-align: left;' | \arccsc(r) | style='border-style: solid none solid none;' | + | style='border-style: solid none solid none;' | style='border-style: solid none solid none; padding-right: 2em;' | \pik | for some k\in\Z | --------------- END: csc θ = r ---------------> | ||
\cos\theta=x | \iff | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' | \theta= | style='border-style: solid none solid none; text-align: right;' | \pm | style='border-style: solid none solid none; text-align: left;' | \arccos(x) | style='border-style: solid none solid none;' | + | style='border-style: solid none solid none;' | 2 | style='border-style: solid none solid none; padding-right: 2em;' | \pik | for some k\in\Z | --------------- END: cos θ = x ---------------> | |
\sec\theta=r | \iff | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' | \theta= | style='border-style: solid none solid none; text-align: right;' | \pm | style='border-style: solid none solid none; text-align: left;' | \arcsec(r) | style='border-style: solid none solid none;' | + | style='border-style: solid none solid none;' | 2 | style='border-style: solid none solid none; padding-right: 2em;' | \pik | for some k\in\Z | ||
\tan\theta=s | \iff | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' | \theta= | style='border-style: solid none solid none; text-align: right;' | style='border-style: solid none solid none; text-align: left;' | \arctan(s) | style='border-style: solid none solid none;' | + | style='border-style: solid none solid none;' | style='border-style: solid none solid none; padding-right: 2em;' | \pik | for some k\in\Z | --------------- END: tan θ = s ---------------> | |||
\cot\theta=r | \iff | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' | \theta= | style='border-style: solid none solid none; text-align: right;' | style='border-style: solid none solid none; text-align: left;' | \arccot(r) | style='border-style: solid none solid none;' | + | style='border-style: solid none solid none;' | style='border-style: solid none solid none; padding-right: 2em;' | \pik | for some k\in\Z | --------------- END: cot θ = r ---------------> |
where the first four solutions can be written in expanded form as:
Equation | Solution | |||||||
---|---|---|---|---|---|---|---|---|
\sin\theta=y | \iff | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' | \theta= \arcsin(y)+2\pih or \theta=-\arcsin(y)+2\pih+\pi | for some h\in\Z | --------------- END: sin θ = x ---------------> | |||
\csc\theta=r | \iff | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' | \theta= \arccsc(r)+2\pih or \theta=-\arccsc(r)+2\pih+\pi | for some h\in\Z | --------------- END: csc θ = r ---------------> | |||
\cos\theta=x | \iff | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' | \theta= \arccos(x)+2\pik or \theta=-\arccos(x)+2\pik | for some k\in\Z | --------------- END: cos θ = x ---------------> | |||
\sec\theta=r | \iff | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' | \theta= \arcsec(r)+2\pik or \theta=-\arcsec(r)+2\pik | for some k\in\Z | --------------- END: sec θ = r ---------------> |
For example, if
\cos\theta=-1
\theta=\pi+2\pik=-\pi+2\pi(1+k)
k\in\Z.
\sin\theta=\pm1
k\in\Z,
k
\sin\theta=1
\sin\theta=-1.
\sec\theta=-1
\csc\theta=\pm1
\cos\theta=-1
\sin\theta=\pm1,
\sin
\csc\theta=\pm1
\cos
\sec\theta=-1
k
\theta
r,s,x,
y
With the help of integer parity it is possible to write a solution to
\cos\theta=x
\pm
cos \theta=x
\theta=(-1)h\arccos(x)+\pih+\pi\operatorname{Parity}(h)
h\in\Z.
sec \theta=r
\theta=(-1)h\arcsec(r)+\pih+\pi\operatorname{Parity}(h)
h\in\Z,
\pih+\pi\operatorname{Parity}(h)
\pih
h
\pih+\pi
The solutions to
\cos\theta=x
\sec\theta=x
\pm,
\cos\theta=x
\sec\theta=x
x
-1\leqx\leq1
\theta
\cos\theta=x.
\theta.
\theta=\arccosx+2\pik
k,
\theta=-\arccosx+2\pik
k.
\arccosx=\pi
x=\cos\pi=-1
k
K
\theta=\pi+2\piK
k
K+1
\theta=-\pi+2\pi(1+K)
x ≠ -1
k
\theta.
\arccosx=0
x=\cos0=1
\pm\arccosx=0
+\arccosx=+0=0
-\arccosx=-0=0
\pm\arccosx
0
\arccosx=0
\arccosx=\pi,
\arccosx ≠ 0
\arccosx ≠ \pi,
\cos\theta=x
\arccosx ≠ 0
0<\arccosx<\pi,
\theta
x=0
\theta
-\pi\leq\theta\leq\pi
k=0
+
-
\theta
\pi/2
-\pi/2.
\theta
\theta
x
\theta=\pi/2
x
\theta=-\pi/2
Thus given a single solution
\theta
\sin\theta=y
\sin(\arcsiny)=y
\theta:=\arcsiny
If \theta | then | Set of all solutions (in terms of \theta | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\sin\theta=y | then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' | \{\varphi:\sin\varphi=y\}= | style='border-style: solid none solid none; text-align: right; padding: 0;' | (\theta | style='border-style: solid none solid none; text-align: left; padding: 0;' | +2 | style='border-style: solid none solid none; text-align: left; padding: 0;' | \pi\Z) | style='border-style: solid none solid none; text-align: left; padding: 0;' | \cup(-\theta | style='border-style: solid none solid none; text-align: left; padding: 0;' | -\pi | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' | +2\pi\Z) | |
\csc\theta=r | then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' | \{\varphi:\csc\varphi=r\}= | style='border-style: solid none solid none; text-align: right; padding: 0;' | (\theta | style='border-style: solid none solid none; text-align: left; padding: 0;' | +2 | style='border-style: solid none solid none; text-align: left; padding: 0;' | \pi\Z) | style='border-style: solid none solid none; text-align: left; padding: 0;' | \cup(-\theta | style='border-style: solid none solid none; text-align: left; padding: 0;' | -\pi | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' | +2\pi\Z) | |
\cos\theta=x | then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' | \{\varphi:\cos\varphi=x\}= | style='border-style: solid none solid none; text-align: right; padding: 0;' | (\theta | style='border-style: solid none solid none; text-align: left; padding: 0;' | +2 | style='border-style: solid none solid none; text-align: left; padding: 0;' | \pi\Z) | style='border-style: solid none solid none; text-align: left; padding: 0;' | \cup(-\theta | style='border-style: solid none solid none; text-align: left; padding: 0;' | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' | +2\pi\Z) | ||
\sec\theta=r | then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' | \{\varphi:\sec\varphi=r\}= | style='border-style: solid none solid none; text-align: right; padding: 0;' | (\theta | style='border-style: solid none solid none; text-align: left; padding: 0;' | +2 | style='border-style: solid none solid none; text-align: left; padding: 0;' | \pi\Z) | style='border-style: solid none solid none; text-align: left; padding: 0;' | \cup(-\theta | style='border-style: solid none solid none; text-align: left; padding: 0;' | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' | +2\pi\Z) | ||
\tan\theta=s | then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' | \{\varphi:\tan\varphi=s\}= | style='border-style: solid none solid none; text-align: right; padding: 0;' | \theta | style='border-style: solid none solid none; text-align: left; padding: 0;' | + | style='border-style: solid none solid none; text-align: left; padding: 0;' | \pi\Z | style='border-style: solid none solid none; text-align: left; padding: 0;' | style='border-style: solid none solid none; text-align: left; padding: 0;' | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' | ||||
\cot\theta=r | then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' | \{\varphi:\cot\varphi=r\}= | style='border-style: solid none solid none; text-align: right; padding: 0;' | \theta | style='border-style: solid none solid none; text-align: left; padding: 0;' | + | style='border-style: solid none solid none; text-align: left; padding: 0;' | \pi\Z | style='border-style: solid none solid none; text-align: left; padding: 0;' | style='border-style: solid none solid none; text-align: left; padding: 0;' | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' |
The equations above can be transformed by using the reflection and shift identities:
Argument: \underline{ ~~~~~~ }= | -\theta |
\pm\theta | \pi\pm\theta |
\pm\theta | 2k\pi\pm\theta, (k\in\Z) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\sin\underline{ ~~~~~~~~~~~~~~ }= | -\sin\theta | \phantom{-}\cos\theta | \mp\sin\theta | -\cos\theta | \pm\sin\theta | ||||||
\csc\underline{ ~~~~~~~~~~~~~~ }= | -\csc\theta | \phantom{-}\sec\theta | \mp\csc\theta | -\sec\theta | \pm\csc\theta | ||||||
\cos\underline{ ~~~~~~~~~~~~~~ }= | \phantom{-}\cos\theta | \mp\sin\theta | -\cos\theta | \pm\sin\theta | \phantom{-}\cos\theta | ||||||
\sec\underline{ ~~~~~~~~~~~~~~ }= | \phantom{-}\sec\theta | \mp\csc\theta | -\sec\theta | \pm\csc\theta | \phantom{-}\sec\theta | ||||||
\tan\underline{ ~~~~~~~~~~~~~~ }= | -\tan\theta | \mp\cot\theta | \pm\tan\theta | \mp\cot\theta | \pm\tan\theta | ||||||
\cot\underline{ ~~~~~~~~~~~~~~ }= | -\cot\theta | \mp\tan\theta | \pm\cot\theta | \mp\tan\theta | \pm\cot\theta |
These formulas imply, in particular, that the following hold:
where swapping
\sin\leftrightarrow\csc,
\cos\leftrightarrow\sec,
\tan\leftrightarrow\cot
\csc,\sec,and\cot,
So for example, by using the equality the equation
\cos\theta=x
\sin\varphi=x
\varphi=(-1)k\arcsin(x)+\pik forsomek\in\Z,
(-1)k=(-1)-k
h:=-k
\cos\theta=x
\arcsinx=
\pi | |
2 |
-\arccosx
\arccosx
\arcsinx.
Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length
x,
x
\theta | \sin(\theta) | \cos(\theta) | \tan(\theta) | Diagram | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\arcsin(x) | \sin(\arcsin(x))=x | \cos(\arcsin(x))=\sqrt{1-x2} | \tan(\arcsin(x))=
| ||||||||||
\arccos(x) | \sin(\arccos(x))=\sqrt{1-x2} | \cos(\arccos(x))=x | \tan(\arccos(x))=
| ||||||||||
\arctan(x) | \sin(\arctan(x))=
| \cos(\arctan(x))=
| \tan(\arctan(x))=x | ||||||||||
\arccot(x) | \sin(\arccot(x))=
| \cos(\arccot(x))=
| \tan(\arccot(x))=
| ||||||||||
\arcsec(x) | \sin(\arcsec(x))=
| \cos(\arcsec(x))=
| \tan(\arcsec(x))=sgn(x)\sqrt{x2-1} | ||||||||||
\arccsc(x) | \sin(\arccsc(x))=
| \cos(\arccsc(x))=
| \tan(\arccsc(x))=
| ||||||||||
Complementary angles:
\begin{align} \arccos(x)&=
\pi | |
2 |
-\arcsin(x)\\[0.5em] \arccot(x)&=
\pi | |
2 |
-\arctan(x)\\[0.5em] \arccsc(x)&=
\pi | |
2 |
-\arcsec(x) \end{align}
Negative arguments:
\begin{align} \arcsin(-x)&=-\arcsin(x)\\ \arccsc(-x)&=-\arccsc(x)\\ \arccos(-x)&=\pi-\arccos(x)\\ \arcsec(-x)&=\pi-\arcsec(x)\\ \arctan(-x)&=-\arctan(x)\\ \arccot(-x)&=\pi-\arccot(x) \end{align}
Reciprocal arguments:
\begin{align} \arcsin\left( | 1 |
x |
\right)&=\arccsc(x)&\\[0.3em] \arccsc\left(
1 | |
x |
\right)&=\arcsin(x)&\\[0.3em] \arccos\left(
1 | |
x |
\right)&=\arcsec(x)&\\[0.3em] \arcsec\left(
1 | |
x |
\right)&=\arccos(x)&\\[0.3em] \arctan\left(
1 | |
x |
\right)&=\arccot(x)&=
\pi | |
2 |
-\arctan(x),ifx>0\\[0.3em] \arctan\left(
1 | |
x |
\right)&=\arccot(x)-\pi&=-
\pi | |
2 |
-\arctan(x),ifx<0\\[0.3em] \arccot\left(
1 | |
x |
\right)&=\arctan(x)&=
\pi | |
2 |
-\arccot(x),ifx>0\\[0.3em] \arccot\left(
1 | |
x |
\right)&=\arctan(x)+\pi&=
3\pi | |
2 |
-\arccot(x),ifx<0\end{align}
\sin
\csc
\csc=\tfrac1{\sin}
\cos
\sec,
\tan
\cot.
Useful identities if one only has a fragment of a sine table:
\begin{align} \arcsin(x)&=
1 | |
2 |
\arccos\left(1-2x2\right),if0\leqx\leq1\\ \arcsin(x)&=\arctan\left(
x | |
\sqrt{1-x2 |
Whenever the square root of a complex number is used here, we choose the root with the positive real part (or positive imaginary part if the square was negative real).
A useful form that follows directly from the table above is
\arctan(x)=\arccos\left(\sqrt{
1 | |
1+x2 |
It is obtained by recognizing that
\cos\left(\arctan\left(x\right)\right)=\sqrt{
1 | |
1+x2 |
From the half-angle formula,
\tan\left(\tfrac{\theta}{2}\right)=\tfrac{\sin(\theta)}{1+\cos(\theta)}
\begin{align} \arcsin(x)&=2\arctan\left(
x | |
1+\sqrt{1-x2 |
\arctan(u)\pm\arctan(v)=\arctan\left(
u\pmv | |
1\mpuv |
\right)\pmod\pi, uv\ne1.
\tan(\alpha\pm\beta)=
\tan(\alpha)\pm\tan(\beta) | |
1\mp\tan(\alpha)\tan(\beta) |
,
\alpha=\arctan(u), \beta=\arctan(v).
See main article: Differentiation of trigonometric functions.
The derivatives for complex values of z are as follows:
\begin{align} | d |
dz |
\arcsin(z)&{}=
1 | |
\sqrt{1-z2 |
\begin{align} | d |
dx |
\arcsec(x)&{}=
1 | |
|x|\sqrt{x2-1 |
\sqrt |
These formulas can be derived in terms of the derivatives of trigonometric functions. For example, if
x=\sin\theta
d | |
dx |
\arcsin(x)=
d\theta | |
dx |
=
1 | |
dx/d\theta |
=
1 | |
\sqrt{1-x2 |
Integrating the derivative and fixing the value at one point gives an expression for the inverse trigonometric function as a definite integral:
\begin{align} \arcsin(x)&{}=
x | |
\int | |
0 |
1 | |
\sqrt{1-z2 |
Similar to the sine and cosine functions, the inverse trigonometric functions can also be calculated using power series, as follows. For arcsine, the series can be derived by expanding its derivative, , as a binomial series, and integrating term by term (using the integral definition as above). The series for arctangent can similarly be derived by expanding its derivative in a geometric series, and applying the integral definition above (see Leibniz series).
\begin{align} \arcsin(z)&=z+\left(
1 | |
2 |
\right)
z3 | |
3 |
+\left(
1 ⋅ 3 | |
2 ⋅ 4 |
\right)
z5 | |
5 |
+\left(
1 ⋅ 3 ⋅ 5 | |
2 ⋅ 4 ⋅ 6 |
\right)
z7 | |
7 |
+ … \\[5pt] &=
infty | |
\sum | |
n=0 |
(2n-1)!! | |
(2n)!! |
z2n+1 | |
2n+1 |
\\[5pt] &=
infty | |
\sum | |
n=0 |
(2n)! | |
(2nn!)2 |
z2n+1 | |
2n+1 |
; |z|\le1 \end{align}
\arctan(z) =z-
z3 | + | |
3 |
z5 | |
5 |
-
z7 | |
7 |
+ … =
infty | |
\sum | |
n=0 |
(-1)nz2n+1 | |
2n+1 |
; |z|\le1 z ≠ i,-i
Series for the other inverse trigonometric functions can be given in terms of these according to the relationships given above. For example,
\arccos(x)=\pi/2-\arcsin(x)
\arccsc(x)=\arcsin(1/x)
2\left(\arcsin\left( | x |
2 |
\right)\right)2=
infty | |
\sum | |
n=1 |
x2n | |
n2\binom{2n |
n}.
Leonhard Euler found a series for the arctangent that converges more quickly than its Taylor series:
\arctan(z)=
z | |
1+z2 |
infty | |
\sum | |
n=0 |
n | |
\prod | |
k=1 |
2kz2 | |
(2k+1)(1+z2) |
.
Alternatively, this can be expressed as
\arctan(z)=
infty | |
\sum | |
n=0 |
22n(n!)2 | |
(2n+1)! |
z2n | |
(1+z2)n |
.
Another series for the arctangent function is given by
\arctan(z)=
| |||||
i\sum | \left( | ||||
n=1 |
1 | |
(1+2i/z)2n-1 |
-
1 | |
(1-2i/z)2n |
\right),
where
i=\sqrt{-1}
Two alternatives to the power series for arctangent are these generalized continued fractions:
\arctan(z)=
z | |
1+\cfrac{(1z)2 |
{3-1z2+\cfrac{(3z)2}{5-3z2+\cfrac{(5z)2}{7-5z2+\cfrac{(7z)2}{9-7z2+\ddots}}}}}=
z | |
1+\cfrac{(1z)2 |
{3+\cfrac{(2z)2}{5+\cfrac{(3z)2}{7+\cfrac{(4z)2}{9+\ddots}}}}}
The second of these is valid in the cut complex plane. There are two cuts, from -i to the point at infinity, going down the imaginary axis, and from i to the point at infinity, going up the same axis. It works best for real numbers running from −1 to 1. The partial denominators are the odd natural numbers, and the partial numerators (after the first) are just (nz)2, with each perfect square appearing once. The first was developed by Leonhard Euler; the second by Carl Friedrich Gauss utilizing the Gaussian hypergeometric series.
For real and complex values of z:
\begin{align} \int\arcsin(z)dz&{}=z\arcsin(z)+\sqrt{1-z2}+C\\ \int\arccos(z)dz&{}=z\arccos(z)-\sqrt{1-z2}+C\\ \int\arctan(z)dz&{}=z\arctan(z)-
1 | |
2 |
ln\left(1+z2\right)+C\\ \int\arccot(z)dz&{}=z\arccot(z)+
1 | |
2 |
ln\left(1+z2\right)+C\\ \int\arcsec(z)dz&{}=z\arcsec(z)-ln\left[z\left(1+\sqrt{
z2-1 | |
z2 |
}\right)\right]+C\\ \int\arccsc(z)dz&{}=z\arccsc(z)+ln\left[z\left(1+\sqrt{
z2-1 | |
z2 |
}\right)\right]+C \end{align}
For real x ≥ 1:
\begin{align} \int\arcsec(x)dx&{}=x\arcsec(x)-ln\left(x+\sqrt{x2-1}\right)+C\\ \int\arccsc(x)dx&{}=x\arccsc(x)+ln\left(x+\sqrt{x2-1}\right)+C \end{align}
For all real x not between -1 and 1:
\begin{align} \int\arcsec(x)dx&{}=x\arcsec(x)-sgn(x)ln\left|x+\sqrt{x2-1}\right|+C\\ \int\arccsc(x)dx&{}=x\arccsc(x)+sgn(x)ln\left|x+\sqrt{x2-1}\right|+C \end{align}
The absolute value is necessary to compensate for both negative and positive values of the arcsecant and arccosecant functions. The signum function is also necessary due to the absolute values in the derivatives of the two functions, which create two different solutions for positive and negative values of x. These can be further simplified using the logarithmic definitions of the inverse hyperbolic functions:
\begin{align} \int\arcsec(x)dx&{}=x\arcsec(x)-\operatorname{arcosh}(|x|)+C\\ \int\arccsc(x)dx&{}=x\arccsc(x)+\operatorname{arcosh}(|x|)+C\\ \end{align}
The absolute value in the argument of the arcosh function creates a negative half of its graph, making it identical to the signum logarithmic function shown above.
All of these antiderivatives can be derived using integration by parts and the simple derivative forms shown above.
Using
\intudv=uv-\intvdu
\begin{align} u&=\arcsin(x)&dv&=dx\\ du&=
dx | |
\sqrt{1-x2 |
Then
\int\arcsin(x)dx=x\arcsin(x)-\int
x | |
\sqrt{1-x2 |
w=1-x2, dw=-2xdx
\int\arcsin(x)dx=x\arcsin(x)+\sqrt{1-x2}+C
Since the inverse trigonometric functions are analytic functions, they can be extended from the real line to the complex plane. This results in functions with multiple sheets and branch points. One possible way of defining the extension is:
\arctan(z)=
z | |
\int | |
0 |
dx | |
1+x2 |
z ≠ -i,+i
The arcsine function may then be defined as:
\arcsin(z)=\arctan\left(
z | |
\sqrt{1-z2 |
\arccos(z)=
\pi | |
2 |
-\arcsin(z) z ≠ -1,+1
\arccot(z)=
\pi | |
2 |
-\arctan(z) z ≠ -i,i
\arcsec(z)=\arccos\left(
1 | |
z |
\right) z ≠ -1,0,+1
\arccsc(z)=\arcsin\left(
1 | |
z |
\right) z ≠ -1,0,+1
These functions may also be expressed using complex logarithms. This extends their domains to the complex plane in a natural fashion. The following identities for principal values of the functions hold everywhere that they are defined, even on their branch cuts.
\begin{align} \arcsin(z)&{}=-iln\left(\sqrt{1-z2}+iz\right)=iln\left(\sqrt{1-z2}-iz\right)&{}=\arccsc\left(
1 | |
z |
\right)\\[10pt] \arccos(z)&{}=-iln\left(i\sqrt{1-z2}+z\right)=
\pi | |
2 |
-\arcsin(z)&{}=\arcsec\left(
1 | |
z |
\right)\\[10pt] \arctan(z)&{}=-
i | |
2 |
ln\left(
i-z | |
i+z |
\right)=-
i | |
2 |
ln\left(
1+iz | |
1-iz |
\right)&{}=\arccot\left(
1 | |
z |
\right)\\[10pt] \arccot(z)&{}=-
i | |
2 |
ln\left(
z+i | |
z-i |
\right)=-
i | |
2 |
ln\left(
iz-1 | |
iz+1 |
\right)&{}=\arctan\left(
1 | |
z |
\right)\\[10pt] \arcsec(z)&{}=-iln\left(i\sqrt{1-
1 | |
z2 |
Because all of the inverse trigonometric functions output an angle of a right triangle, they can be generalized by using Euler's formula to form a right triangle in the complex plane. Algebraically, this gives us:
cei\theta=c\cos(\theta)+ic\sin(\theta)
cei\theta=a+ib
where
a
b
c
\theta
\begin{align} eln(c)&=a+ib\\ lnc+i\theta&=ln(a+ib)\\ \theta&=\operatorname{Im}\left(ln(a+ib)\right) \end{align}
\theta=-iln\left(
a+ib | |
c |
\right)
Simply taking the imaginary part works for any real-valued
a
b
a
b
ln(a+bi)
c
z
a2+b2=c2
The table below shows the values of a, b, and c for each of the inverse trig functions and the equivalent expressions for
\theta
\theta=-iln\left(\tfrac{a+ib}{c}\right)
\begin{align} &a&&b&&c&&-iln\left(
a+ib | |
c |
\right)&&\theta&&\thetaa,b\in\R\\ \arcsin(z) &\sqrt{1-z2}&&z&&1&&-iln\left(
\sqrt{1-z2 | |
+ |
iz}{1}\right)&&=-iln\left(\sqrt{1-z2}+iz\right)&&\operatorname{Im}\left(ln\left(\sqrt{1-z2}+iz\right)\right)\\ \arccos(z) &z&&\sqrt{1-z2}&&1&&-iln\left(
z+i\sqrt{1-z2 | |
The particular form of the simplified expression can cause the output to differ from the usual principal branch of each of the inverse trig functions. The formulations given will output the usual principal branch when using the
\operatorname{Im}\left(lnz\right)\in(-\pi,\pi]
\operatorname{Re}\left(\sqrt{z}\right)\ge0
\theta
\theta
\operatorname{Im}\left(lnz\right)\in[0,2\pi)
\operatorname{Im}\left(\sqrt{z}\right)\ge0
In this sense, all of the inverse trig functions can be thought of as specific cases of the complex-valued log function. Since these definition work for any complex-valued
z
\begin{align} \sin(\phi)&=z\\ \phi&=\arcsin(z) \end{align}
Using the exponential definition of sine, and letting
\xi=ei,
\begin{align} z&=
ei-e-i | |
2i |
\\[10mu] 2iz&=\xi-
1 | |
\xi |
\\[5mu] 0&=\xi2-2iz\xi-1\\[5mu] \xi&=iz\pm\sqrt{1-z2}\\[5mu] \phi&=-iln\left(iz\pm\sqrt{1-z2}\right) \end{align}
(the positive branch is chosen)
\phi=\arcsin(z)=-iln\left(iz+\sqrt{1-z2}\right)
- | \arcsin(z) | \arccos(z) | \arctan(z) |
- | \arccsc(z) | \arcsec(z) | \arccot(z) |
Inverse trigonometric functions are useful when trying to determine the remaining two angles of a right triangle when the lengths of the sides of the triangle are known. Recalling the right-triangle definitions of sine and cosine, it follows that
\theta=\arcsin\left(
opposite | |
hypotenuse |
\right)=\arccos\left(
adjacent | |
hypotenuse |
\right).
Often, the hypotenuse is unknown and would need to be calculated before using arcsine or arccosine using the Pythagorean Theorem:
a2+b2=h2
h
\theta=\arctan\left(
opposite | |
adjacent |
\right).
For example, suppose a roof drops 8 feet as it runs out 20 feet. The roof makes an angle θ with the horizontal, where θ may be computed as follows:
\theta =\arctan\left(
opposite | |
adjacent |
\right) =\arctan\left(
rise | |
run |
\right) =\arctan\left(
8 | |
20 |
\right) ≈ 21.8\circ.
See main article: atan2. The two-argument atan2 function computes the arctangent of y / x given y and x, but with a range of (−, ]. In other words, atan2(y, x) is the angle between the positive x-axis of a plane and the point (x, y) on it, with positive sign for counter-clockwise angles (upper half-plane, y > 0), and negative sign for clockwise angles (lower half-plane, y < 0). It was first introduced in many computer programming languages, but it is now also common in other fields of science and engineering. In terms of the standard arctan function, that is with range of (−,), it can be expressed as follows:
\operatorname{atan2}(y,x)=\begin{cases} \arctan\left(
y | |
x\right) |
& x>0\\ \arctan\left(
y | |
x\right) |
+\pi& y\ge0, x<0\\ \arctan\left(
y | |
x\right) |
-\pi& y<0, x<0\\
\pi | |
2 |
& y>0, x=0\\ -
\pi | |
2 |
& y<0, x=0\\ undefined& y=0, x=0 \end{cases}
It also equals the principal value of the argument of the complex number x + iy.
This limited version of the function above may also be defined using the tangent half-angle formulae as follows:
\operatorname{atan2}(y,x)=2\arctan\left(
y | |
\sqrt{x2+y2 |
+x}\right)
The above argument order (y, x) seems to be the most common, and in particular is used in ISO standards such as the C programming language, but a few authors may use the opposite convention (x, y) so some caution is warranted. These variations are detailed at atan2.
In many applications[5] the solution
y
x=\tan(y)
-infty<η<infty
y=\arctanη(x):=\arctan(x)+\pi\operatorname{rni}\left(
η-\arctan(x) | |
\pi |
\right).
The function
\operatorname{rni}
For angles near 0 and, arccosine is ill-conditioned, and similarly with arcsine for angles near -/2 and /2. Computer applications thus need to consider the stability of inputs to these functions and the sensitivity of their calculations, or use alternate methods.
\iff
\iff
To clarify, suppose that it is written "LHS
\iff
\theta
s
\tan\theta=s
\theta
s
\theta=0
s=0
\tan\theta=\tan0=s
\theta=0
s=2
\tan\theta=\tan0=s
s=2
\theta=0
s ≠ 0.
\theta=\arctan(s)+\pik
k\in\Z
\theta
s
\iff
\iff
\pm\pi/2