An arbitrarily varying channel (AVC) is a communication channel model used in coding theory, and was first introduced by Blackwell, Breiman, and Thomasian. This particular channel has unknown parameters that can change over time and these changes may not have a uniform pattern during the transmission of a codeword.
stylen
styleWn:Xn x
styleSn → Yn
styleX
styleY
styleWn(y|x,s)
styleS
stylex=(x1,\ldots,xn)
styley=(y1,\ldots,yn)
stylesi
styleS
stylei
An AVC's capacity can vary depending on the certain parameters.
styleR
style0
style\varepsilon
style\delta
stylen
stylen
style | 1 |
n |
logN>R-\delta
\displaystyle
max | |
s\inSn |
\bar{e}(s)\leq\varepsilon
styleN
styleY
style\bar{e}(s)
styles
styleR
stylec
As you can see, the only useful situations are when the capacity of the AVC is greater than
style0
style\leqc
stylec
stylec
Before stating Theorem 1, a few definitions need to be addressed:
\displaystyle\sumsW(y|x,s)U(s|x')=\sumsW(y|x',s)U(s|x)
style(x,x',y,s)
stylex,x'\inX
styley\inY
styleU(s|x)
styleU:X → S
styleXr
styleSr
styleYr
styleX
styleS
styleY
styleP | |
Xr |
(x)
styleXr
stylex
styleP | |
Sr |
(s)
styleSr
styles
styleP | |
XrSrYr |
styleP | |
Xr |
(x)
styleP | |
Sr |
(s)
styleW(y|x,s)
styleP | |
XrSrYr |
styleP | |
XrSrYr |
(x,s,y)=
P | |
Xr |
(x)P | |
Sr |
(s)W(y|x,s)
styleH(Xr)
styleXr
styleH(Xr|Yr)
styleXr
styleYr
styleI(Xr\landYr)
styleXr
styleYr
styleH(Xr)-H(Xr|Yr)
\displaystyleI(P)=
min | |
Yr |
I(Xr\landYr)
styleYr
styleXr
styleSr
styleYr
styleP | |
XrSrYr |
Theorem 1:
stylec>0
stylec>0
\displaystylec=maxPI(P)
Proof of 1st part for symmetry: If we can prove that
styleI(P)
stylec=maxPI(P)
styleI(P)
style0
styleI(P)
styleXr
styleYr
styleSr
styleP | |
XrSrYr |
styleP | |
Xr |
=P
\displaystyle
P | |
Yr |
(y)=\sumx\in\sums\in
P(x)P | |
Sr |
(s)W(y|x,s)
style\equiv(
styleXr
styleYr
styleW(y|x,s)=W'(y|s)
styleW')
\displaystyle
P | |
Yr |
(y)=\sumx\in\sums\in
P(x)P | |
Sr |
(s)W'(y|s)
style\equiv(
styleP(x)
stylex
style)
\displaystyle
P | |
Yr |
(y)=\sums\in
P | |
Sr |
(s)W'(y|s)\left[\sumx\inP(x)\right]
style\equiv(
\displaystyle\sumx\inP(x)=1)
\displaystyle
P | |
Yr |
(y)=\sums\in
P | |
Sr |
(s)W'(y|s)
So now we have a probability distribution on
styleYr
styleXr
\displaystyle\sums
W'(y|s)P | |
Sr |
(s)=\sums
W'(y|s)P | |
Sr |
(s)
styleU(s|x)
styleW(y|x,s)
stylex
styles
styley
styleP | |
Yr |
(y)
styleI(P)
style0
styleI(P)
Proof of second part for capacity: See the paper "The capacity of the arbitrarily varying channel revisited: positivity, constraints," referenced below for full proof.
The next theorem will deal with the capacity for AVCs with input and/or state constraints. These constraints help to decrease the very large range of possibilities for transmission and error on an AVC, making it a bit easier to see how the AVC behaves.
Before we go on to Theorem 2, we need to define a few definitions and lemmas:
For such AVCs, there exists:
- An input constraint
style\Gamma
\displaystyleg(x)=
1 | |
n |
n | |
\sum | |
i=1 |
g(xi)
stylex\inX
stylex=(x1,...,xn)
- A state constraint
styleΛ
\displaystylel(s)=
1 | |
n |
n | |
\sum | |
i=1 |
l(si)
styles\inX
styles=(s1,...,sn)
-
\displaystyleΛ0(P)=min\sumxP(x)l(s)
-
styleI(P,Λ)
styleI(P)
\displaystyleI(P,Λ)=
min | |
Yr |
I(Xr\landYr)
styles
styleSr
stylel(s)\leqΛ
Assume
styleg(x)
styleX
stylel(s)
styleS
style0
styleg(x)
stylel(s)
stylexi
style\Gamma
styleΛ
styleR
stylex1,...,xN
styleg(xi)\leq\Gamma
styles
stylel(s)\leqΛ
stylec(\Gamma,Λ)
Lemma 1: Any codes where
styleΛ
styleΛ0(P)
style | N-1 |
2N |
-
1 | |
n |
| ||||||||
|
stylelmax
stylel(s)
style | N-1 |
2N |
style | 1 |
2 |
style(Λ-Λ0(P))
styleΛ
styleΛ0(P)
styleΛ0(P)
Theorem 2: Given a positive
styleΛ
style\alpha>0
style\beta>0
style\delta>0
stylen\geqn0
styleP
styleΛ0(P)\geqΛ+\alpha
\displaystyleminxP(x)\geq\beta
styleP | |
Xr |
=P
stylex1,...,xN
styleP
style | 1 |
n |
logN>I(P,Λ)-\delta
\displaystylemaxl(s)\bar{e}(s)\leq\exp(-n\gamma)
stylen0
style\gamma
style\alpha
style\beta
style\delta
Proof of Theorem 2: See the paper "The capacity of the arbitrarily varying channel revisited: positivity, constraints," referenced below for full proof.
The next theorem will be for AVCs with randomized code. For such AVCs the code is a random variable with values from a family of length-n block codes, and these codes are not allowed to depend/rely on the actual value of the codeword. These codes have the same maximum and average error probability value for any channel because of its random nature. These types of codes also help to make certain properties of the AVC more clear.
Before we go on to Theorem 3, we need to define a couple important terms first:
\displaystyleW\zeta(y|x)=\sumsW(y|x,
s)P | |
Sr |
(s)
styleI(P,\zeta)
styleI(P)
\displaystyleI(P,\zeta)=
min | |
Yr |
I(Xr\landYr)
styleP | |
Sr |
(s)
styleI(P,\zeta)
styleP | |
XrSrYr |
styleW\zeta(y|x)
styleW(y|x,s)
Theorem 3: The capacity for randomized codes of the AVC is
\displaystylec=maxPI(P,\zeta)
Proof of Theorem 3: See paper "The Capacities of Certain Channel Classes Under Random Coding" referenced below for full proof.