Andreotti–Grauert theorem explained
In mathematics, the Andreotti–Grauert theorem, introduced by, gives conditions for cohomology groups of coherent sheaves over complex manifolds to vanish or to be finite-dimensional.
statement
Let be a (not necessarily reduced) complex analytic space, and
a coherent analytic sheaf over X. Then,
\rm{dim}C Hi(X,l{F})<infty
for
(resp.
), if is q-pseudoconvex (resp. q-pseudoconcave). (finiteness)
for
, if is q-complete. (vanish)
References
-
- Book: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry . Demailly . Jean-Pierre . Peternell . Thomas . Schneider . Michael . 1996 . Holomorphic line bundles with partially vanishing cohomology. 19030117 . Israel mathematical conference proceedings; vol. 9. 33806479.
- 10.5802/afst.1308 . A converse to the Andreotti-Grauert theorem . 2011 . Demailly . Jean-Pierre . Annales de la Faculté des Sciences de Toulouse: Mathématiques . 20 . 123–135 . 18656051 . free . 1011.3635 .
- Book: 10.1007/978-1-4899-6724-4_3 . The Cauchy-Riemann Equation on q-Convex Manifolds . [{{Google books|AJWnEAAAQBAJ|page=116|plainurl=yes}} Andreotti-Grauert Theory by Integral Formulas ]. Progress in Mathematics . 1988 . Henkin . Gennadi M. . Leiterer . Jürgen . 74 . 77–116 . 978-0-8176-3413-1.
- Book: 10.1007/978-1-4899-6724-4_4 . The Cauchy-Riemann Equation on q-Concave Manifolds . [{{Google books|AJWnEAAAQBAJ|page=143|plainurl=yes}} Andreotti-Grauert Theory by Integral Formulas ]. Progress in Mathematics . 1988 . Henkin . Gennadi M. . Leiterer . Jürgen . 74 . 117–196 . 978-0-8176-3413-1 .
- 10.2977/PRIMS/1195181418 . Completeness of noncompact analytic spaces . 1984 . Ohsawa . Takeo . Publications of the Research Institute for Mathematical Sciences . 20 . 3 . 683–692 . free .
- Book: 10.1007/978-981-19-1239-9_4 . Q-Convexity and q-Cycle Spaces . [{{Google books|aBZzEAAAQBAJ|page=38|plainurl=yes}} Analytic Continuation and q-Convexity ]. SpringerBriefs in Mathematics . 2022 . Ohsawa . Takeo . Pawlaschyk . Thomas . 37–47 . 978-981-19-1238-2 .
- Théorèmes de séparation et de finitude pour l'homologie et la cohomologie des espaces (p,q)-convexes-concaves . Annali della Scuola Normale Superiore di Pisa - Classe di Scienze . 1973 . 27 . 4 . 933–997 . Ramis . J. P. .