In algebra, the Amitsur complex is a natural complex associated to a ring homomorphism. It was introduced by . When the homomorphism is faithfully flat, the Amitsur complex is exact (thus determining a resolution), which is the basis of the theory of faithfully flat descent.
The notion should be thought of as a mechanism to go beyond the conventional localization of rings and modules.
Let
\theta:R\toS
C\bullet=S ⊗
⊗
⊗ R
⊗ \Z
di:S ⊗
1
i
i(x | |
d | |
0 |
⊗ … ⊗ xn)=x0 ⊗ … ⊗ xi-1 ⊗ 1 ⊗ xi ⊗ … ⊗ xn.
si:S ⊗ \toS ⊗
i
(i+1)
i(x | |
s | |
0 |
⊗ … ⊗ xn)=x0 ⊗ … ⊗ xixi+1 ⊗ … ⊗ xn.
S ⊗
\theta
0\toR\overset{\theta}\toS\overset{\delta0}\toS ⊗ \overset{\delta1}\toS ⊗ \to …
\deltan=
n+1 | |
\sum | |
i=0 |
(-1)idi.
In the above notations, if
\theta
0\toR\overset{\theta}\toS ⊗
\theta
R
M
0\toM\toS ⊗ RM\toS ⊗ ⊗ RM\toS ⊗ ⊗ RM\to …
Proof:
Step 1: The statement is true if
\theta:R\toS
That "
\theta
\rho\circ\theta=\operatorname{id}R
\rho:S\toR
\rho
\theta
\rho
h:S ⊗ ⊗ M\toS ⊗ ⊗ M
\begin{align} &h(x0 ⊗ m)=\rho(x0) ⊗ m,\\ &h(x0 ⊗ … ⊗ xn ⊗ m)=\theta(\rho(x0))x1 ⊗ … ⊗ xn ⊗ m. \end{align}
\delta-1=\theta ⊗ \operatorname{id}M:M\toS ⊗ RM
h\circ\deltan+\deltan-1\circh=
\operatorname{id} | |
S ⊗ ⊗ M |
h
\operatorname{id} | |
S ⊗ ⊗ M |
Step 2: The statement is true in general.
We remark that
S\toT:=S ⊗ RS,x\mapsto1 ⊗ x
T\toS,x ⊗ y\mapstoxy
S\toT
0\toMS\toT ⊗ SMS\toT ⊗ ⊗ SMS\to … ,
MS=S ⊗ RM
T ⊗ SMS\simeqS ⊗ ⊗ RM
\square
show that the Amitsur complex is exact if
R
S