Éléments de mathématique explained

Éléments de mathématique
(Elements of Mathematics)
Author:Nicolas Bourbaki
Title Orig:Traité d'analyse (Treatise on Analysis)
Country:France
Language:French, English
Discipline:Mathematics
Publisher:Hermann (historical), Masson (historical), Springer (current)
Pub Date:1939-present
Number Of Books:29 (French), 15 (English)
Website:https://www.bourbaki.fr/Ouvrages.html

Éléments de mathématique (English: Elements of Mathematics) is a series of mathematics books written by the pseudonymous French collective Nicolas Bourbaki. Begun in 1939, the series has been published in several volumes, and remains in progress. The series is noted as a large-scale, self-contained, formal treatment of mathematics.[1] [2]

The members of the Bourbaki group originally intended the work as a textbook on analysis, with the working title Traité d'analyse (Treatise on Analysis). While planning the structure of the work they became more ambitious, expanding its scope to cover several branches of modern mathematics. Once the plan of the work was expanded to treat other fields in depth, the title Éléments de mathématique was adopted. Topics treated in the series include set theory, abstract algebra, topology, analysis, Lie groups and Lie algebras.

The unusual singular "mathématique" (mathematic) of the title is deliberate, meant to convey the authors' belief in the unity of mathematics. A companion volume, Éléments d'histoire des mathématiques (Elements of the History of Mathematics), collects and reproduces several of the historical notes that previously appeared in the work.

History

In late 1934, a group of mathematicians including André Weil resolved to collectively write a textbook on mathematical analysis. They intended their work as a modern replacement for Édouard Goursat's Course in Mathematical Analysis (1902) —and also to fill a void in instructional material caused by the death of a generation of mathematics students in World War I. The group adopted the collective pseudonym Nicolas Bourbaki, after the French general Charles-Denis Bourbaki. During the late 1930s and early 1940s, the Bourbaki group expanded the plan of their work beyond analysis, and began publishing texts under the title Éléments de mathématique.

Volumes of the Éléments have appeared periodically since the publication of the first Fascicule ("Installment") in 1939 by Éditions Hermann, with several being published during the 1950s and 1960s, Bourbaki's most productive period and time of greatest influence. Several years have sometimes passed before the publication of a new volume, and various factors have contributed to a slow pace of publication. The group's working style is slow and rigorous, and a final product is not deemed acceptable unless it is unanimously approved by the group. Further, World War II interrupted Bourbaki's activities during its early years. In the 1970s a legal dispute arose with Hermann, the group's original publisher, concerning copyright and royalty payments. The Bourbaki group won the involved lawsuit, retaining copyright over the work authored under the pseudonym, but at a price: the legal battle had dominated the group's attention during the 1970s, preventing them from doing productive mathematical work under the Bourbaki name. Following the lawsuit and during the 1980s, publication of new volumes was resumed via Éditions Masson. From the 1980s through the 2000s Bourbaki published very infrequently, with the result that in 1998 Le Monde pronounced the collective "dead". However, in 2012 Bourbaki resumed publication of the Éléments with a revised and expanded edition of the eighth chapter of Algebra, the first of new books on algebraic topology (covering also material that had originally been planned as the eleventh chapter of the group's book on general topology) and the two volumes of significantly expanded book on spectral theory. Furthermore, two entirely new books (on category theory and modular forms) are stated to be under preparation.

Springer Verlag became Bourbaki's current publisher during the 21st century, reprinting the Éléments while also publishing new volumes. Some early versions of the Éléments can be viewed at an online archive,[3] and the mathematical historian Liliane Beaulieu has documented the sequence of publication.[4]

The Éléments have had a complex publication history. From the 1940s through the 1960s, Bourbaki published the Éléments in booklet form as small installments of individual chapters, known in the French as fascicules. Despite having settled on a logical sequence for the work (see below), Bourbaki did not publish the Éléments in the order of its logical structure. Rather, the group planned the arc of the work in broad strokes and published disparate chapters wherever they could agree on a final product, with the understanding that (logically) later chapters published (chronologically) first would ultimately have to be grounded in the later publication of logically earlier chapters. The first installment of the Éléments to be published was the Summary of Results for the Theory of Sets in 1939; the first proper chapter of content on set theory—with proofs and theorems—did not appear until 1954. Independently of the work's logical structure, The early fascicules were assigned chronological numberings by the publisher Hermann for historical reference. Gradually, the small fascicules were collected and reprinted in larger volumes, forming the basis of the modern edition of the work.

The large majority of the Éléments has been translated into an English edition, although this translation is incomplete. Currently the complete French edition of the work consists of 12 books printed in 29 volumes, with 73 chapters. The English edition completely reproduces seven books and partially reproduces two, with three unavailable; it comprises 14 volumes, reproducing 58 of the original's 73 chapters.[5] [6] [7] However, the English General Topology is not based on latest revised French edition (of 1971 and 1974) and misses some material added there (for example on quaternions and rotation groups in Chapter VIII).

Structure

Éléments de mathématique is divided into books, volumes, and chapters. A book refers to a broad area of investigation or branch of mathematics (Algebra, Integration); a given book is sometimes published in multiple volumes (physical books) or else in a single volume. The work is further subdivided into chapters with some volumes consisting of a single chapter.

Typically of mathematics textbooks, the Éléments chapters present definitions, mathematical notation, proofs of theorems and exercises, forming the core mathematical content of the work. The chapters are supplemented by historical notes and summaries of results. The former usually appear after a given chapter to contextualize the development of its topics, and the latter are occasionally used sections in which a book's major results are collected and stated without proof. Eléments d'histoire des mathématiques is a compilation volume of several of the historical note sections previously published in the Éléments proper, through the book on Lie groups and Lie algebras.

When Bourbaki's founders originally planned the Treatise on Analysis, they conceived of an introductory and foundational section of the text, which would describe all prerequisite concepts from scratch. This proposed area of the text was referred to as the "Abstract Packet" (Paquet Abstrait). During the early planning stages the founders greatly expanded the scope of the abstract packet, with the result that it would require several volumes for its expression rather than a section or chapter in a single volume. This portion of the Éléments was gradually realized as its first three books, dealing with set theory, abstract algebra, and general topology.

Today, the Éléments divide into two parts. Bourbaki structured the first part of the work into six sequentially numbered books: I. Theory of Sets, II. Algebra, III. General Topology, IV. Functions of a Real Variable, V. Topological Vector Spaces, and VI. Integration. The first six books are given the unifying subtitle Les structures fondamentales de l’analyse (Fundamental Structures of Analysis),[8] fulfilling Bourbaki's original intent to write a rigorous treatise on analysis, together with a thorough presentation of set theory, algebra and general topology.

Throughout the Fundamental Structures of Analysis, any statements or proofs presented within a given chapter assume as given the results established in previous chapters, or previously in the same chapter. In detail, the logical structure within the first six books is as follows, with each section taking as given all preceding material:

Thus the six books are also "logically ordered", with the caveat that some material presented in the later chapters of Algebra, the second book, invokes results from the early chapters of General Topology, the third book.

Following the Fundamental Structures of Analysis, the second part of the Éléments consists of books treating more modern research topics: Lie Groups and Lie Algebras, Commutative Algebra, Spectral Theory, Differential and Analytic Manifolds, and Algebraic Topology. Whereas the Éléments first six books followed a strict, sequential logical structure, each book in the second part is dependent on the results established in the first six books, but not on those of the second part's other books. The second part of the work also lacks a unifying subtitle comparable to the Fundamental Structures of Analysis.

Volumes

The Éléments are published in French and English volumes, detailed below.

French edition!!colspan="4"
English edition
BookVolumeCh. no.ChapterBookVolumeCh. no.Chapter
Théorie des ensemblesThéorie des ensembles[9] [10] 1Description de la mathématique formelleTheory of SetsTheory of Sets[11] [12] 1Description of Formal Mathematics
2Théorie des ensembles2Theory of Sets
3Ensembles ordonnés, cardinaux, nombres entiers3Ordered Sets, Cardinals, Integers
4Structures4Structures
Fascicule de résultatsSummary of Results
AlgèbreAlgèbre: Chapitres 1 à 3[13] [14] 1Structures algébriquesAlgebraAlgebra I: Chapters 1-3[15] [16] 1Algebraic Structures
2Algèbre linéaire2Linear Algebra
3Algèbres tensorielles, algèbres extérieures, algèbres symétriques3Tensor Algebras, Exterior Algebras, Symmetric Algebras
4Polynômes et fractions rationnellesAlgebra II: Chapters 4-7[17] [18] 4Polynomials and Rational Fractions
5Corps commutatifs5Commutative Fields
6Groupes et corps ordonnés6Ordered Groups and Fields
7Modules sur les anneaux principaux7Modules over Principal Ideal Domains
Algèbre: Chapitre 8[19] [20] 8Modules et anneaux semi-simplesAlgebra: Chapter 8[21] 8Semi-simple Modules and Rings
Algèbre: Chapitre 9[22] [23] 9Formes sesquilinéaires et formes quadratiquesUnavailable in English9Sesquilinear and Quadratic Forms
Algèbre: Chapitre 10[24] [25] 10Algèbre homologique10Homological Algebra
Topologie généraleTopologie générale: [26] [27] 1Structures topologiquesGeneral TopologyGeneral Topology: Chapters 1-4[28] [29] 1Topological Structures
2Structures uniformes2Uniform Structures
3Groupes topologiques3Topological Groups
4Nombres réels4Real Numbers
Topologie générale: [30] [31] 5Groupes à un paramètreGeneral Topology: Chapters 5-10[32] [33] 5One-Parameter Groups
6Espaces numériques et espaces projectifs6Real Number Spaces and Projective Spaces
7Les groupes additifs

Rn

7The Additive Groups

Rn

8Nombres complexes8Complex Numbers
9Utilisation des nombres réels en topologie générale9Use of Real Numbers in General Topology
10Espaces fonctionnels10Function Spaces
Fonctions d'une variable réelleFonctions d'une variable réelle[34] [35] 1DérivéesFunctions of a Real VariableFunctions of a Real Variable: Elementary Theory[36] [37] 1Derivatives
2Primitives et intégrales2Primitives and Integrals
3Fonctions élémentaires3Elementary Functions
4Équations différentielles4Differential Equations
5Etude locale des fonctions5Local Study of Functions
6Développements tayloriens généralisés, formule sommatoire d'Euler-Maclaurin6Generalized Taylor Expansions, The Euler-Maclaurin Summation Formula
7La fonction gamma7The Gamma Function
Espaces vectoriels topologiquesEspaces vectoriels topologiques: Chapitres 1 à 5[38] [39] 1Espaces vectoriels topologiques sur un corps valuéTopological Vector SpacesTopological Vector Spaces: Chapters 1-5[40] [41] 1Topological Vector Spaces over a Valued Division Ring
2Ensembles convexes et espaces localement convexes2Convex Sets and Locally Convex Spaces
3Espaces d'applications linéaires continues3Spaces of Continuous Linear Mappings
4La dualité dans les espaces vectoriels topologiques4Duality in Topological Vector Spaces
5Espaces hilbertiens (théorie élémentaire)5Hilbertian Spaces (Elementary Theory)
IntégrationIntégration:
Chapitres 1 à 4
[42] [43]
1Inégalités de convexitéIntegrationIntegration I: Chapters 1-6[44] [45] 1Inequalities of Convexity
2Espaces de Riesz2Riesz Spaces
3Mesures sur les espaces localement compacts3Measures on Locally Compact Spaces
4Prolongement d'une mesure et espaces

Lp

4Extension of a Measure,

Lp

Spaces
Intégration: Chapitre 5[46] [47] 5Intégration des mesures5Integration of Measures
Intégration: Chapitre 6[48] [49] 6Intégration vectorielle6Vectorial Integration
Intégration:
Chapitres 7 et 8
[50] [51]
7Mesure de HaarIntegration II: Chapters 7-9[52] [53] 7Haar Measure
8Convolution et représentations8Convolution and Representations
Intégration: Chapitre 9[54] [55] 9Mesures sur les espaces topologiques séparés9Measures on Hausdorff Topological Spaces
Groupes et algèbres de LieGroupes et algèbres de Lie: Chapitre 1[56] [57] 1Algèbres de LieLie Groups and Lie AlgebrasLie Groups and Lie Algebras: Chapters 1-3[58] [59] 1Lie Algebras
Groupes et algèbres de Lie: Chapitres 2 et 3[60] [61] 2Algèbres de Lie libres2Free Lie Algebras
3Groupes de Lie3Lie Groups
Groupes et algèbres de Lie: Chapitres 4 à 6[62] [63] 4Groupes de Coxeter et systèmes de TitsLie Groups and Lie Algebras: Chapters 4-6[64] [65] 4Coxeter Groups and Tits Systems
5Groupes engendrés par des réflexions5Groups Generated by Reflections
6Systèmes de racines6Root Systems
Groupes et algèbres de Lie: Chapitres 7 et 8[66] [67] 7Sous-algèbres de Cartan et éléments réguliersLie Groups and Lie Algebras: Chapters 7-9[68] [69] 7 Cartan Subalgebras and Regular Elements
8Algèbres de Lie semi-simples déployées8Split Semi-simple Lie Algebras
Groupes et algèbres de Lie: Chapitre 9[70] [71] 9Groupes de Lie réels compacts9Compact Real Lie Groups
Algèbre commutativeAlgèbre commutative:
Chapitres 1 à 4
[72] [73]
1Modules platsCommutative AlgebraCommutative Algebra: Chapters 1-7[74] [75] 1Flat Modules
2Localisation2Localization
3Graduations, filtrations et topologies3Graduations, Filtrations and Topologies
4Idéaux premiers associés et décomposition primaire4Associated Prime Ideals and Primary Decomposition
Algèbre commutative:
Chapitres 5 à 7
[76] [77]
5Entiers5Integers
6Valuations6Valuations
7Diviseurs7Divisors
Algèbre commutative:
Chapitres 8 et 9
[78] [79]
8DimensionUnavailable in English8Dimension
9Anneaux locaux noethériens complets9Complete Noetherian Local Rings
Algèbre commutative:
Chapitre 10
[80] [81]
10Profondeur, régularité, dualité10Depth, Regularity, Duality
Théories spectralesThéories spectrales:
Chapitres 1 et 2
[82] [83]
1Algèbres norméesSpectral TheoryUnavailable in English1Normed Algebras
2Groupes localement compacts commutatifs2Locally Compact Commutative Groups
Théories spectrales:
Chapitres 3 à 5
[84]
3Opérateurs compacts et perturbations3Compact operators and perturbations
4Théorie spectrale hilbertienne4Hilbert's spectral theory
5Représentations unitaires5Unitary representations
Variétés différentielles et analytiquesVariétés différentielles et analytiquesDifferential and Analytic ManifoldsUnavailable in EnglishSummary of Results
Topologie algébriqueTopologie algébrique:
Chapitres 1 à 4
[85] [86]
1RevêtementsAlgebraic TopologyUnavailable in English1Covering Spaces
2Groupoïdes2Groupoids
3Homotopie et groupoïde de Poincaré3Homotopy and the Poincaré Groupoid
4Espaces délaçables4Deloopable Spaces
Éléments d'histoire des mathématiques[87] [88] Elements of the History of Mathematics[89] [90]

See also

Notes and References

  1. Book: Mashaal, Maurice . Bourbaki: a Secret Society of Mathematicians . 2006 . . 978-0821839676 . .
  2. Book: Aczel, Amir D. . Amir Aczel . The Artist and the Mathematician: the Story of Nicolas Bourbaki, the Genius Mathematician Who Never Existed . 2006 . Thunder's Mouth Press . 978-1560259312 . .
  3. Web site: Archives de l'Association des Collaborateurs de Nicolas Bourbaki.
  4. Web site: Éléments de Mathématique . Archives Bourbaki.
  5. http://www.bourbaki.ens.fr/Ouvrages.html Ouvrages de N. Bourbaki
  6. https://www.springer.com/series/7436 Eléments de Mathématique
  7. https://www.springer.com/series/47 Elements of Mathematics
  8. Book: Carl Benjamin Boyer . Boyer . Carl B. . Uta Merzbach . Merzbach . Uta C. . foreword . Isaac Asimov . Asimov . Isaac . A History of Mathematics . 20 March 1991 . Second . Wiley . 9780471543978 . 629.
  9. Book: Bourbaki . Nicolas . Théorie des ensembles . 1970 . Springer . Éléments de mathématique . 9783540340348. French paperback edition.
  10. Book: Théorie des ensembles . Springer.
  11. Book: Bourbaki . Nicolas . Theory of Sets . 2004 . Springer . Elements of Mathematics . 9783540225256. English paperback edition.
  12. Book: Theory of Sets . Springer.
  13. Book: Bourbaki . Nicolas . Algèbre: Chapitres 1 à 3 . 1970 . Springer . Éléments de mathématique . 9783540338499. French paperback edition.
  14. Book: Algèbre: Chapitres 1 à 3 . Springer.
  15. Book: Bourbaki . Nicolas . Algebra I: Chapters 1-3 . 1989 . Springer . Elements of Mathematics . 9783540642435. English paperback edition.
  16. Book: Algebra I: Chapters 1-3 . Springer.
  17. Book: Bourbaki . Nicolas . Cohn . P.M. . Paul Cohn . Howie . J. . Algebra II: Chapters 4-7 . 1990 . Springer . Elements of Mathematics . 9783540007067. English paperback edition.
  18. Book: Algebra II: Chapters 4-7 . Springer.
  19. Book: Bourbaki . Nicolas . Algèbre: Chapitre 8 . 2012 . Springer . Éléments de mathématique . 978-3540353157. Revised and expanded edition of 2012
  20. Book: Bourbaki . Nicolas . Algèbre: Chapitre 8 . 1958. Hermann . Éléments de mathématique . Paris. Original edition of 1958
  21. Book: Bourbaki . Nicolas . Algebra: Chapitre 8 . 2023a . Springer . Elements of Mathematics . 978-3031192920. Translation of the revised and expanded 2012 edition
  22. Book: Bourbaki . Nicolas . Algèbre: Chapitre 9 . 1959 . Springer . Éléments de mathématique . 9783540353386. French paperback edition. Original 1959 edition revised in a 1973 edition.
  23. Book: Algèbre: Chapitre 9 . Springer.
  24. Book: Bourbaki . Nicolas . Algèbre: Chapitre 10 . 1980 . Springer . Éléments de mathématique . 9783540344926. French paperback edition.
  25. Book: Algèbre: Chapitre 10 . Springer.
  26. Book: Bourbaki . Nicolas . Topologie générale: Chapitres 1 à 4 . 1971 . Springer . Éléments de mathématique . 9783540339366. French paperback edition.
  27. Book: Topologie générale: Chapitres 1 à 4 . Springer.
  28. Book: Bourbaki . Nicolas . General Topology: Chapters 1-4 . 1989 . Springer . Elements of Mathematics . 9783540642411. English paperback edition.
  29. Book: General Topology: Chapters 1-4 . Springer.
  30. Book: Bourbaki . Nicolas . Topologie générale: Chapitres 5 à 10 . 1974 . Springer . Éléments de mathématique . 9783540343998. French paperback edition.
  31. Book: Topologie générale: Chapitres 5 à 10 . Springer.
  32. Book: Bourbaki . Nicolas . General Topology: Chapters 5-10 . 1989 . Springer . Elements of Mathematics . 9783540645634. English paperback edition.
  33. Book: General Topology: Chapters 5-10 . Springer.
  34. Book: Bourbaki . Nicolas . Fonctions d'une variable réelle . 1976 . Springer . Éléments de mathématique . 9783540340362. French paperback edition.
  35. Book: Fonctions d'une variable réelle . Springer.
  36. Book: Bourbaki . Nicolas . Spain . Philip . Functions of a Real Variable: Elementary Theory . 2004 . Springer . Elements of Mathematics . 9783642639326. English paperback edition.
  37. Book: Functions of a Real Variable: Elementary Theory . Springer. (URL number refers to English hardback edition.)
  38. Book: Bourbaki . Nicolas . Espaces vectoriels topologiques: Chapitres 1 à 5 . 1981 . Springer . Éléments de mathématique . 9783540344971. French paperback edition.
  39. Book: Espaces vectoriels topologiques: Chapitres 1 à 5 . Springer.
  40. Book: Bourbaki . Nicolas . Eggleston . H.G. . Madan . S. . Topological Vector Spaces: Chapters 1-5 . 1987 . Springer . Elements of Mathematics . 9783540423386. English paperback edition.
  41. Book: Topological Vector Spaces: Chapters 1-5 . Springer.
  42. Book: Bourbaki . Nicolas . Intégration: Chapitres 1 à 4 . 1965 . Springer . Éléments de mathématique . 9783540353287. French paperback edition. Original 1965 edition revised in a 1973 edition.
  43. Book: Intégration: Chapitres 1 à 4 . Springer.
  44. Book: Bourbaki . Nicolas . Berberian . Sterling K. . Integration I: Chapters 1-6 . 2004 . Springer . Elements of Mathematics . 9783642639302. English paperback edition.
  45. Book: Integration I: Chapters 1-6 . Springer.
  46. Book: Bourbaki . Nicolas . Intégration: Chapitre 5 . 1967 . Springer . Éléments de mathématique . 9783540353331. French paperback edition.
  47. Book: Intégration: Chapitre 5 . Springer.
  48. Book: Bourbaki . Nicolas . Intégration: Chapitre 6 . 1959 . Springer . Éléments de mathématique . 9783540353195. French paperback edition.
  49. Book: Intégration: Chapitre 6 . Springer.
  50. Book: Bourbaki . Nicolas . Intégration: Chapitres 7 et 8 . 1963 . Springer . Éléments de mathématique . 9783540353249. French paperback edition.
  51. Book: Intégration: Chapitres 7 et 8 . Springer.
  52. Book: Bourbaki . Nicolas . Berberian . Sterling K. . Integration II: Chapters 7-9 . 2004 . Springer . Elements of Mathematics . 9783642058219. English paperback edition.
  53. Book: Integration II: Chapters 7-9 . Springer. (URL number refers to English hardback edition.)
  54. Book: Bourbaki . Nicolas . Intégration: Chapitre 9 . 1969 . Springer . Éléments de mathématique . 9783540343905. French paperback edition.
  55. Book: Intégration: Chapitre 9 . Springer.
  56. Book: Bourbaki . Nicolas . Groupes et algèbres de Lie: Chapitre 1 . 1971 . Springer . Éléments de mathématique . 9783540353355. French paperback edition.
  57. Book: Groupes et algèbres de Lie: Chapitre 1 . Springer.
  58. Book: Bourbaki . Nicolas . Lie Groups and Lie Algebras: Chapters 1-3 . 1989 . Springer . Elements of Mathematics . 9783540642428. English paperback edition.
  59. Book: Lie Groups and Lie Algebras: Chapters 1-3 . Springer.
  60. Book: Bourbaki . Nicolas . Groupes et algèbres de Lie: Chapitres 2 et 3 . 1972 . Springer . Éléments de mathématique . 9783540339403. French paperback edition.
  61. Book: Groupes et algèbres de Lie: Chapitres 2 et 3 . Springer.
  62. Book: Bourbaki . Nicolas . Groupes et algèbres de Lie: Chapitres 4 à 6 . 1968 . Springer . Éléments de mathématique . 9783540344902. French paperback edition.
  63. Book: Groupes et algèbres de Lie: Chapitres 4 à 6 . Springer.
  64. Book: Bourbaki . Nicolas . Pressley . Andrew . Lie Groups and Lie Algebras: Chapters 4-6 . 2002 . Springer . Elements of Mathematics . 9783540691716. English paperback edition.
  65. Book: Lie Groups and Lie Algebras: Chapters 4-6 . Springer.
  66. Book: Bourbaki . Nicolas . Groupes et algèbres de Lie: Chapitres 7 et 8 . 1975 . Springer . Éléments de mathématique . 9783540339397. French paperback edition.
  67. Book: Groupes et algèbres de Lie: Chapitres 7 et 8 . Springer.
  68. Book: Bourbaki . Nicolas . Pressley . Andrew . Lie Groups and Lie Algebras: Chapters 7-9 . 2005 . Springer . Elements of Mathematics . 9783540688518. English paperback edition.
  69. Book: Lie Groups and Lie Algebras: Chapters 7-9 . Springer.
  70. Book: Bourbaki . Nicolas . Groupes et algèbres de Lie: Chapitre 9 . 1982 . Springer . Éléments de mathématique . 9783540343929. French paperback edition.
  71. Book: Groupes et algèbres de Lie: Chapitre 9 . Springer.
  72. Book: Bourbaki . Nicolas . Algèbre commutative: Chapitres 1 à 4 . 1968 . Springer . Éléments de mathématique . 9783540339373. French paperback edition.
  73. Book: Algèbre commutative: Chapitres 1 à 4 . Springer.
  74. Book: Bourbaki . Nicolas . Commutative Algebra: Chapters 1-7 . 1989 . Springer . Elements of Mathematics . 9783540642398. English paperback edition.
  75. Book: Commutative Algebra: Chapters 1-7 . Springer.
  76. Book: Bourbaki . Nicolas . Algèbre commutative: Chapitres 5 à 7 . 1964 . Springer . Éléments de mathématique . 9783540339410. French paperback edition.
  77. Book: Algèbre commutative: Chapitres 5 à 7 . Springer.
  78. Book: Bourbaki . Nicolas . Algèbre commutative: Chapitres 8 et 9 . 1983 . Springer . Éléments de mathématique . 9783540339427. French paperback edition.
  79. Book: Algèbre commutative: Chapitres 8 et 9 . Springer.
  80. Book: Bourbaki . Nicolas . Algèbre commutative: Chapitre 10 . 1998 . Springer . Éléments de mathématique . 9783540343943. French paperback edition.
  81. Book: Algèbre commutative: Chapitre 10 . Springer.
  82. Book: Bourbaki . Nicolas . Théories spectrales: Chapitres 1 et 2 . 1967 . Springer . Éléments de mathématique . 978-3540353300. Reprint of the original 1967 edition
  83. Book: Bourbaki . Nicolas . Théories spectrales: Chapitres 1 et 2 — Seconde édition, refondue et augmentée. 2019 . Springer . Éléments de mathématique . 978-3030140632. Expanded second edition
  84. Book: Bourbaki . Nicolas . Théories spectrales: Chapitres 3 à 5 . 2023b . Springer . Éléments de mathématique . 978-3031195044.
  85. Book: Bourbaki . Nicolas . Topologie Algébrique: Chapitres 1 à 4 . 2016 . Springer . Éléments de mathématique . 9783662493601. French paperback edition.
  86. Book: Topologie Algébrique: Chapitres 1 à 4 . Springer.
  87. Book: Bourbaki . Nicolas . Eléments d'histoire des mathématiques . 1974 . Springer . Éléments de mathématique . 9783540339380. French paperback edition.
  88. Book: Eléments d'histoire des mathématiques . Springer.
  89. Book: Bourbaki . Nicolas . Meldrum . John . Elements of the History of Mathematics . registration . 1994 . Springer . Elements of Mathematics . 9783540647676. English paperback edition.
  90. Book: Elements of the History of Mathematics . Springer.