In mathematics, more specifically, in convex geometry, the mixed volume is a way to associate a non-negative number to a tuple of convex bodies in
Rn
Let
K1,K2,...,Kr
Rn
f(λ1,\ldots,λr)=Voln(λ1K1+ … +λrKr), λi\geq0,
where
Voln
n
Ki
f
n
f(λ1,\ldots,λr) =
r | |
\sum | |
j1,\ldots,jn=1 |
V(K | |
j1 |
,\ldots,
K | |
jn |
)
λ | |
j1 |
…
λ | |
jn |
,
where the functions
V
j\in\{1,\ldots,r\}n
V(K | |
j1 |
,...,
K | |
jn |
)
K | |
j1 |
,...,
K | |
jn |
V(K,...,K)=Voln(K)
V
V
V(λK+λ'K',K2,...,Kn)=λV(K,K2,...,Kn) +λ'V(K',K2,...,Kn)
λ,λ'\geq0
V(K1,K2,\ldots,Kn)\leqV(K1',K2,\ldots,Kn)
K1\subseteqK1'
V(K1,K2,K3,\ldots,Kn)\geq\sqrt{V(K1,K1,K3,\ldots,Kn)V(K2,K2,K3,\ldots,Kn)}.
Numerous geometric inequalities, such as the Brunn - Minkowski inequality for convex bodies and Minkowski's first inequality, are special cases of the Alexandrov - Fenchel inequality.
Let
K\subsetRn
B=Bn\subsetRn
Wj(K)=V(\overset{n-jtimes
is called the j-th quermassintegral of
K
The definition of mixed volume yields the Steiner formula (named after Jakob Steiner):
Voln(K+tB) =
n | |
\sum | |
j=0 |
\binom{n}{j}Wj(K)tj.
The j-th intrinsic volume of
K
Vj(K)=\binom{n}{j}
Wn-j(K) | |
\kappan-j |
,
Voln(K+tB)=
n | |
\sum | |
j=0 |
Vj(K)Voln-j(tBn-j).
where
\kappan-j=Voln-j(Bn-j)
(n-j)
See main article: Hadwiger's theorem.
Hadwiger's theorem asserts that every valuation on convex bodies in
Rn
Rn