In mathematics, particularly in algebraic topology, Alexander–Spanier cohomology is a cohomology theory for topological spaces.
It was introduced by for the special case of compact metric spaces, and by for all topological spaces, based on a suggestion of Alexander D. Wallace.
If X is a topological space and G is an R module where R is a ring with unity, then there is a cochain complex C whose p-th term
Cp
Xp+1
d\colonCp-1\toCp
df(x0,\ldots,xp)=
if(x | |
\sum | |
0,\ldots,x |
i-1,xi+1,\ldots,xp).
The defined cochain complex
C*(X;G)
X
X
G\simeqH*(C*(X;G))
G
G
An element
\varphi\inCp(X)
\{U\}
X
\varphi
(p+1)
X
\{U\}
\varphi
Cp(X)
p(X) | |
C | |
0 |
* | |
C | |
0(X) |
=
p(X),d\} | |
\{C | |
0 |
C*(X)
\bar{C}*(X)=C
*(X) | |
0 |
\bar{H}p(X,G)
\bar{C}*(X)
Given a function
f:X\toY
f\sharp:C*(Y;G)\toC*(X;G)
defined by
\sharp\varphi)(x | |
(f | |
0,...,x |
p)=(\varphif)(x0,...,xp), \varphi\in
p(Y); x | |
C | |
0,...,x |
p\inX
If
f
f\sharp:\bar{C}*(Y;G)\to\bar{C}*(X;G)
If
A
X
i:A\hookrightarrowX
i\sharp:\bar{C}*(X;G)\to\bar{C}*(A;G)
i\sharp
\bar{C}*(X;G)
\bar{C}*(X,A;G)
C*(X,A)
C*(X)
\varphi
A
\bar{C}*(X,A)=C*(X,A)/C
* | |
0(X) |
The relative module is
\bar{H}*(X,A;G)
\bar{C}*(X,A;G)
\bar{H}q(X,A;G)
(X,A)
q
G
X
G\simeq\bar{H}*(X;G)
(X,A)
i:A\hookrightarrowX
j:X\hookrightarrow(X,A)
(X,A)
U
X
\bar{U}\subset\operatorname{int}A
\bar{C}*(X,A)\simeq\bar{C}*(X-U,A-U)
f0,f1:(X,A)\to(Y,B)
* | |
f | |
0 |
=
*:H | |
f | |
1 |
*(Y,B;G)\toH*(X,A;G)
A subset
B\subsetX
X-B
Similar to the definition of Alexander cohomology module, one can define Alexander cohomology module with compact supports of a pair
(X,A)
\varphi\inCq(X,A;G)
X
Formally, one can define as follows : For given topological pair
(X,A)
q | |
C | |
c(X,A;G) |
Cq(X,A;G)
\varphi\inCq(X,A;G)
\varphi
X
Similar to the Alexander cohomology module, one can get a cochain complex
* | |
C | |
c(X,A;G) |
=
q | |
\{C | |
c(X,A;G),\delta\} |
* | |
\bar{C} | |
c(X,A;G) |
=
* | |
C | |
c(X,A;G)/C |
*(X;G) | |
0 |
The cohomology module induced from the cochain complex
* | |
\bar{C} | |
c |
(X,A)
* | |
\bar{H} | |
c(X,A;G) |
Under this definition, we can modify homotopy axiom for cohomology to a proper homotopy axiom if we define a coboundary homomorphism
\delta*:\bar{H}
q | |
c(A;G)\to |
q+1 | |
\bar{H} | |
c(X,A;G) |
A\subsetX
One of the most important property of this Alexander cohomology module with compact support is the following theorem:
X
X+
X
n;G)\simeq\begin{cases} | |
\bar{H} | |
c(\R |
0&q ≠ n\ G&q=n\end{cases}
(\Rn)+\congSn
n ≠ m
\Rn
\Rm
B\subsetA\subsetX
X
A
B
X
(A,B)
X
Using this tautness property, one can show the following two facts:[4]
(X,A)
(Y,B)
X
Y
A
B
f:(X,A)\to(Y,B)
f
X-A
Y-B
q
G
\{(X\alpha,A\alpha)\}\alpha
i\alpha:(X,A)\to(X\alpha,A\alpha)
q(X | |
\{i | |
\alpha,A |
q(X,A;M) | |
\alpha;M)\xrightarrow{\sim}\bar{H} |
Recall that the singular cohomology module of a space is the direct product of the singular cohomology modules of its path components.
A nonempty space
X
G\simeq\bar{H}0(X;G)
If
\{Uj\}
X
\{Cj\}
X
It is also possible to define Alexander–Spanier homology and Alexander–Spanier cohomology with compact supports.
The Alexander–Spanier cohomology groups coincide with Čech cohomology groups for compact Hausdorff spaces, and coincide with singular cohomology groups for locally finite complexes.