Alberto Cattaneo Explained
Alberto Sergio Cattaneo (26 June 1967 in Milan)[1] is an Italian mathematician and mathematical physicist, specializing in geometry related to quantum field theory and string theory.
Biography
After attending Liceo scientifico A. Volta in Milan, Cattaneo studied physics at University of Milan, graduating in 1991. In 1995 he obtained a PhD in theoretical physics at the same university; his thesis, entitled Teorie topologiche di tipo BF ed invarianti dei nodi (Topological BF theories and knot invariants), was supervised by Maurizio Martellini.[2]
Cattaneo worked as a postdoc in 1995-1997 at Harvard University (with Arthur Jaffe) and in 1997-1998 at University of Milan (with Paolo Cotta-Ramusino). In 1998 he moved to University of Zurich's mathematics department as assistant professor and he become full professor in 2003.
In 2006 he was an invited speaker, with the talk From topological field theory to deformation quantization and reduction, at the International Congress of Mathematicians in Madrid.[3] Cattaneo was elected a Fellow of the American Mathematical Society in 2013.[4]
Research
Cattaneo's research interests include deformation quantization, symplectic and Poisson geometry, topological quantum field theories, and the mathematical aspects of perturbative quantization of gauge theories.
With Giovanni Felder he developed a path integral interpretation of the deformation quantization of Poisson manifolds (introduced in 2003 by Maxim Kontsevich),[5] as well as a description of the symplectic groupoid integrating a Poisson manifold as an infinite-dimensional symplectic quotient.[6]
He supervised 14 PhD students as of 2022.
Selected publications
Articles
- Topological BF theories in 3 and 4 dimensions. 10.1063/1.531238. 1995. Cattaneo. Alberto S.. Cotta‐Ramusino. Paolo. Fröhlich. Jürg. Martellini. Maurizio. Journal of Mathematical Physics. 36. 11. 6137–6160. hep-th/9505027. 1995JMP....36.6137C. 166350.
- From local to global deformation quantization of Poisson manifolds. math/0012228. 10.1215/S0012-7094-02-11524-5. 2002. Cattaneo. Alberto S.. Felder. Giovanni. Tomassini. Lorenzo. Duke Mathematical Journal. 115. 2. 10201285.
- Book: math/0403135. 10.5167/uzh-21691. 2005. Cattaneo. A. S.. Indelicato. D.. Formality and star products. 323. 79–144. 9780521615051. 17250747.
- math/0501540 . 10.1016/j.aim.2006.03.010. free. Relative formality theorem and quantisation of coisotropic submanifolds. 2007. Cattaneo. Alberto S.. Felder. Giovanni. Advances in Mathematics. 208. 2. 521–548. 10469717.
- math/0701378. 10.5167/uzh-6703. 2008. Cattaneo. A. S.. Deformation quantization and reduction. Cont. Math.. 450. 79–101. 218971990.
- 0905.3574. 10.4310/JSG.2010.v8.n2.a4. Symplectic microgeometry I: Micromorphisms. 2010. Cattaneo. Alberto S.. Dherin. Benoit. Weinstein. Alan. Alan Weinstein. Journal of Symplectic Geometry. 8. 2. 205–223. 50308861.
- 1103.0672. 10.1007/s00574-011-0027-2. Symplectic microgeometry II: Generating functions. 2011. Cattaneo. Alberto S.. Dherin. Benoît. Weinstein. Alan. Bulletin of the Brazilian Mathematical Society . New Series. 42. 4. 507–536. 44023383.
- Book: 978-3-0348-8364-1 . Poisson sigma models and symplectic groupoids by A. Cattaneo and G. Felder . Martin Schlichenmaier . Quantization of Singular Symplectic Quotients, eds. Landsman, Pflaum, & Schlichenmaier . 2012 . https://books.google.com/books?id=TiPyBwAAQBAJ&pg=PA61 . 61–94 . Landsman . N. P. . Pflaum . Markus . Schlichenmaier . Martin.
- 1207.0239. Cattaneo. Alberto S.. Mnev. Pavel. Reshetikhin. Nicolai. Classical and quantum Lagrangian field theories with boundary. 2012. math-ph.
- 1109.4789. 10.4310/JSG.2013.v11.n3.a1. Symplectic microgeometry III: Monoids. 2013. Cattaneo. Alberto S.. Dherin. Benoit. Weinstein. Alan. Journal of Symplectic Geometry. 11. 3. 319–341. 50637248.
- 1602.00741. Cattaneo. Alberto S.. Mnev. Pavel. Reshetikhin. Nicolai. Perturbative BV theories with Segal-like gluing. 2016. math-ph.
- 1607.02412. 10.1007/s11005-016-0907-x. On Time. 2017. Cattaneo. Alberto S.. Schiavina. Michele. Letters in Mathematical Physics. 107. 2. 375–408. 2017LMaPh.107..375C. 119145820.
- 1507.01221. 10.1007/s00220-017-3031-6. Perturbative Quantum Gauge Theories on Manifolds with Boundary. 2018. Cattaneo. Alberto S.. Mnev. Pavel. Reshetikhin. Nicolai. Communications in Mathematical Physics. 357. 2. 631–730. 2018CMaPh.357..631C. 21.11116/0000-0004-0613-0. 119640108.
- 1807.11782. 10.1007/s00220-019-03591-5. Globalization for Perturbative Quantization of Nonlinear Split AKSZ Sigma Models on Manifolds with Boundary. 2019. Cattaneo. Alberto S.. Moshayedi. Nima. Wernli. Konstantin. Communications in Mathematical Physics. 372. 1. 213–260. 2019CMaPh.372..213C. 119605584.
- 2007.08167. Cattaneo. Alberto S.. Dherin. Benoit. Weinstein. Alan. Symplectic microgeometry, IV: Quantization. Pacific Journal of Mathematics. 2021. 312. 2. 355–399. 10.2140/pjm.2021.312.355. 220546201.
Books
as editor
References
- Web site: Prof. Alberto S. Cattaneo. Institut für Mathematik, Universität Zürich.
- Web site: Alberto Cattaneo - The Mathematics Genealogy Project . 2022-06-18 . www.genealogy.math.ndsu.nodak.edu.
- Book: Proceedings of the International Congress of Mathematician 2006 . . 2007 . Sanz-Solé . Marta . Marta Sanz-Solé . Madrid . 339 . Soria . Javier . Varona . Juan Luis . Verdera . Joan.
- Web site: Fellows of the American Mathematical Society . 2022-06-18 . American Mathematical Society . en.
- Cattaneo . Alberto . Felder . Giovanni . Giovanni Felder . 2000 . A Path Integral Approach to the Kontsevich Quantization Formula . Communications in Mathematical Physics . 212 . 3 . 591–611 . math/9902090 . 2000CMaPh.212..591C . 10.1007/s002200000229 . 8510811.
- Cattaneo . Alberto S. . Felder . Giovanni . Giovanni Felder . 2001 . Poisson sigma models and symplectic groupoids . Quantization of Singular Symplectic Quotients . en . Basel . Birkhäuser . 61–93 . 10.1007/978-3-0348-8364-1_4 . 978-3-0348-8364-1. 10248666 . math/0003023 .
- Web site: Déformation, Quantification, Théorie de Lie. AMS Bookstore.
External links