Alan David White Explained
Alan David White (1923 — 9 May 2020) was an American physicist, known primarily as one of the inventors of the visible helium-neon laser.
Biography
After completing his military service during World War II, White graduated due to the G.I. Bill. He earned degrees in physics and mathematics from Rutgers University and Syracuse University. From 1953 to 1983 he worked at Bell Laboratories. Then he was a scientific consultant for Tropel Corp.
He was fond of art, in particular, sculpture.
For his achievements he was awarded the 1984 IEEE David Sarnoff Award, and in 2000 he was elected to the New Jersey Inventors Hall of Fame.[1]
Scientific achievements
The first gas laser, using a mixture of helium and neon, was demonstrated in 1960 and emitted radiation at a wavelength of 1.15 μm (infrared range).[2] Two years later, White, together with Dane Rigden, showed that a helium-neon laser can emit radiation at a wavelength of 632.8 nm, i.e., in the visible range of the spectrum.[3] In subsequent years, White, with Eugene I. Gordon and others, investigated the reasons for the limitation of the power of such lasers,[4] established scaling laws for gas-discharge lasers,[5] and developed frequency stabilization methods for such devices.[6] The first continuous-wave visible laser, invented by White and Rigden, is still widely used in research and education, and is a part of various instruments.[7]
White also made significant contributions to the development of lenses for microlithography, as well as methods for aligning a lithographic mask using special lenses and Fresnel zone plates.[8]
Select publications
- White . Alan D. . 1959 . New hollow cathode glow discharge . . 30 . 5 . 711–719 . 10.1063/1.1735220. 1959JAP....30..711W .
- White . Alan D. . Rigden . J.D. . 1962 . Continuous gas maser operation in the visible . Proceedings of the IRE . 50 . 7 . 1697 . 10.1109/JRPROC.1962.288157.
- White . Alan D. . Gordon . E.I. . 1963 . Excitation mechanisms and current dependence of population inversion in HeNe lasers . . 3 . 11 . 197–199 . 10.1063/1.1753846. 1963ApPhL...3..197W .
- White . Alan D. . 1965 . Frequency Stabilization of Gas Lasers . . QE-1 . 8 . 349–357 . 10.1109/JQE.1965.1072246. 1965IJQE....1..349W .
- Bruning . J.H. . Herriott . D.R. . Gallagher . J.E. . Rosenfeld . D.P. . White . A.D. . Brangaccio . D.J. . 1974 . Digital wavefront measuring interferometer for testing optical surfaces and lenses . . 13 . 11 . 2693–2703 . 10.1364/AO.13.002693. 20134757 . 1974ApOpt..13.2693B .
Sources
Notes and References
- Web site: 2000 Awardees . 2022-10-28 . NJ Inventors Hall of Fame 2018 . en.
- Javan . A. . Bennett . W. R. . Herriott . D. R. . 1961-02-01 . Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture . Physical Review Letters . 6 . 3 . 106–110 . 10.1103/PhysRevLett.6.106. 1961PhRvL...6..106J . free .
- July 1962 . Correspondence . Proceedings of the IRE . 50 . 7 . 1683–1713 . 10.1109/JRPROC.1962.288157 . 2162-6634.
- Gordon . E. I. . White . A. D. . 1963-12-01 . SIMILARITY LAWS FOR THE EFFECTS OF PRESSURE AND DISCHARGE DIAMETER ON GAIN OF He–Ne LASERS . Applied Physics Letters . 3 . 11 . 199–201 . 10.1063/1.1753847 . 1963ApPhL...3..199G . 0003-6951.
- White . A. D. . Gordon . E. I. . 1963-12-01 . EXCITATION MECHANISMS AND CURRENT DEPENDENCE OF POPULATION INVERSION IN He–Ne LASERS . Applied Physics Letters . 3 . 11 . 197–199 . 10.1063/1.1753846 . 1963ApPhL...3..197W . 0003-6951.
- White . A. . November 1965 . Frequency stabilization of gas lasers . IEEE Journal of Quantum Electronics . 1 . 8 . 349–357 . 10.1109/JQE.1965.1072246 . 1965IJQE....1..349W . 1558-1713.
- Lindley . David . 2010-12-10 . Landmarks: The First Laser to Stay On . Physics . en . 26.
- 10.1364/AO.13.002693 . Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses . 1974 . Bruning . J. H. . Herriott . D. R. . Gallagher . J. E. . Rosenfeld . D. P. . White . A. D. . Brangaccio . D. J. . Applied Optics . 13 . 11 . 2693–3303 . 20134757 . 1974ApOpt..13.2693B .