Linfty
Hs
Let
u\inH2(\Omega)\cap
1 | |
H | |
0(\Omega) |
\Omega\subsetR3
C
\displaystyle
\|u\| | |
Linfty(\Omega) |
\leqC
1/2 | |
\|u\| | |
H1(\Omega) |
1/2 | |
\|u\| | |
H2(\Omega) |
,
and
\displaystyle
\|u\| | |
Linfty(\Omega) |
\leqC
1/4 | |
\|u\| | |
L2(\Omega) |
3/4 | |
\|u\| | |
H2(\Omega) |
.
In 2D, the first inequality still holds, but not the second: let
u\inH2(\Omega)\cap
1 | |
H | |
0(\Omega) |
\Omega\subsetR2
C
\displaystyle
\|u\| | |
Linfty(\Omega) |
\leqC
1/2 | |
\|u\| | |
L2(\Omega) |
1/2 | |
\|u\| | |
H2(\Omega) |
.
For the
n
s1
s2
s1<\tfrac{n}{2}<s2
0<\theta<1
\tfrac{n}{2}=\thetas1+(1-\theta)s2
u\in
s2 | |
H |
(\Omega)
\displaystyle
\|u\| | |
Linfty(\Omega) |
\leqC
\theta | |||||||
\|u\| | |||||||
|
1-\theta | |||||||
\|u\| | |||||||
|