X
X=R3
X
Being a vector bundle, the tangent bundle
TX
n
X
ATX
AFX
X
GA(n,R)
The tangent bundle
TX
FX
GL(n,R)
GA(n,R)
GL(n,R)
Tn
There is the canonical imbedding of
FX
AFX
TX
Given linear bundle coordinates
| |||
(x |
\mu),
x' |
| ||||
x |
\nu, (1)
on the tangent bundle
TX
(x\mu,\widetilde
| |||
x |
\mu+a\mu(x\alpha)), \widetilde
| ||||
x' |
\widetildex\nu+b\mu(x\alpha). (2)
and, in particular, with the linear coordinates (1).
The affine tangent bundle
ATX
A
AFX
Given the linear bundle coordinates (1) on
ATX=TX
A
λ ⊗ [\partial | |
A=dx | |
λ |
+
| |||
(\Gamma | |||
\nu(x |
\mu(x | |
λ |
| |||
\mu]. |
(3)
This affine connection defines a unique linear connection
\Gamma
λ ⊗ [\partial | |
=dx | |
λ |
+
| |||
\Gamma | |||
\nu(x |
| |||
\mu] |
(4)
on
TX
FX
Conversely, every linear connection
\Gamma
TX\toX
A\Gamma
ATX
\Gamma
ATX=TX
A\Gamma
λ ⊗ [\partial | |
=dx | |
λ |
+
\alpha)\widetilde | |
(\Gamma | |
\nu(x |
x\nu+
\mu(x | |
s | |
λ |
\alpha))\widetilde\partial | |
\mu], |
\mu | |
s | |
λ |
=-
\mu{} | |
\Gamma | |
\nu |
a\nu+\partialλa\mu,
relative to the affine coordinates (2).
Then any affine connection
A
ATX\toX
A=A\Gamma+\sigma (5)
of the extended linear connection
A\Gamma
\mu(x | |
\sigma=\sigma | |
λ |
\alpha)dx
λ ⊗ \partial | |
\mu |
(6)
on
TX
\partial |
\mu=\partial\mu
VATX=ATX x XTX
VATX
ATX
Relative to the linear coordinates (1), the sum (5) is brought into a sum
A=\Gamma+\sigma
\Gamma
\sigma
\sigma
Let us note that a true translation gauge field (i.e., an affine connection which yields a flat linear connection on
TX
X
In field theory, one meets a problem of physical interpretation of translation gauge fields because there are no fields subject to gauge translations
u(x)\tou(x)+a(x)
uk
k=1,2,3
uk\touk+ak(x)
In this case, let
X=R3
i ⊗ (\partial | |
A=dx | |
i |
+
k)\widetilde\partial | |
A | |
j) |
with respect to the affine bundle coordinates (2). This is a translation gauge field whose coefficients
j | |
A | |
l |
Djui
i- | |
=\partial | |
ju |
i | |
A | |
j |
k | |
F | |
ji |
=\partialj
k | |
A | |
i |
-\partiali
k | |
A | |
j |
Equations of gauge theory of dislocations are derived from a gauge invariant Lagrangian density
L(\sigma)=\mu
kD | |
D | |
iu |
iu | |
k |
+
λ | |
2 |
i) | |
(D | |
iu |
2-\epsilon
k{} | |
F | |
ij |
ij | |
F | |
k{} |
,
where
\mu
λ
uk(x)
In gauge gravitation theory on a world manifold
X
TX
X
TX
\Gamma
\sigma
As was mentioned above, the soldering form
\sigma
\sigma
TX ⊗ T*X
FX
In the spirit of the above-mentioned gauge theory of dislocations, it has been suggested that a soldering field
\sigma
X
s:TX\ni\partialλ\to\partialλ\rfloor(\theta+\sigma)
\nu+ | |
=(\delta | |
λ |
\nu)\partial | |
\sigma | |
\nu\in |
TX,
where
\theta=dx\mu ⊗ \partial\mu
Then one considers metric-affine gravitation theory
(g,\Gamma)
\widetildeg\mu\nu
\mu | |
=s | |
\alpha |
\nu | |
s | |
\beta |
g\alpha\beta
\sigma
L(\sigma)=
12[a | |
1T |
\mu{} | |
\nu\mu |
\nu\alpha | |
T | |
\alpha{} |
+ a2T\mu\nu\alphaT\mu\nu\alpha+a3T\mu\nu\alphaT\nu\mu\alpha
\mu\nu\alpha\beta | |
+a | |
4\epsilon |
\gamma{} | |
T | |
\mu\gamma |
T\beta\nu\alpha
\mu{} | |
-\mu\sigma | |
\mu |
\nu{} | |
\sigma | |
\nu]\sqrt{-g} |
where
\epsilon\mu\nu\alpha\beta
\alpha{} | |
T | |
\nu\mu |
\alpha{} | |
=D | |
\mu |
\alpha{} | |
-D | |
\nu |
is the torsion of a linear connection
\Gamma
\sigma