Aeroplankton Explained

Aeroplankton (or aerial plankton) are tiny lifeforms that float and drift in the air, carried by wind. Most of the living things that make up aeroplankton are very small to microscopic in size, and many can be difficult to identify because of their tiny size. Scientists collect them for study in traps and sweep nets from aircraft, kites or balloons.[1] The study of the dispersion of these particles is called aerobiology.

Aeroplankton is made up mostly of microorganisms, including viruses, about 1,000 different species of bacteria, around 40,000 varieties of fungi, and hundreds of species of protists, algae, mosses, and liverworts that live some part of their life cycle as aeroplankton, often as spores, pollen, and wind-scattered seeds. Additionally, microorganisms are swept into the air from terrestrial dust storms, and an even larger amount of airborne marine microorganisms are propelled high into the atmosphere in sea spray. Aeroplankton deposits hundreds of millions of airborne viruses and tens of millions of bacteria every day on every square meter around the planet.

Small, drifting aeroplankton are found everywhere in the atmosphere, reaching concentration up to 106 microbial cells per cubic metre. Processes such as aerosolization and wind transport determine how the microorganisms are distributed in the atmosphere. Air mass circulation globally disperses vast numbers of the floating aerial organisms, which travel across and between continents, creating biogeographic patterns by surviving and settling in remote environments. As well as the colonization of pristine environments, the globetrotting behaviour of these organisms has human health consequences. Airborne microorganisms are also involved in cloud formation and precipitation, and play important roles in the formation of the phyllosphere, a vast terrestrial habitat involved in nutrient cycling.

Overview

The atmosphere is the least understood biome on Earth despite its critical role as a microbial transport medium. Recent studies have shown microorganisms are ubiquitous in the atmosphere and reach concentration up to 106 microbial cells per cubic metre (1000000disp=outNaNdisp=out)[2] and that they might be metabolically active.[3] [4] Different processes, such as aerosolisation, might be important in selecting which microorganisms exist in the atmosphere. Another process, microbial transport in the atmosphere, is critical for understanding the role microorganisms play in meteorology, atmospheric chemistry and public health.

Changes in species geographic distributions can have strong ecological and socioeconomic consequences.[5] In the case of microorganisms, air mass circulation disperses vast amounts of individuals and interconnects remote environments. Airborne microorganisms can travel between continents,[6] survive and settle on remote environments,[7] which creates biogeographic patterns. The circulation of atmospheric microorganisms results in global health concerns and ecological processes such as widespread dispersal of both pathogens[8] and antibiotic resistances,[9] cloud formation and precipitation, and colonization of pristine environments. Airborne microorganisms also play a role in the formation of the phyllosphere, which is one of the vastest habitats on the Earth's surface[10] involved in nutrient cycling.[11] [12]

The field of bioaerosol research studies the taxonomy and community composition of airborne microbial organisms, also referred to as the air microbiome. A recent series of technological and analytical advancements include high-volumetric air samplers, an ultra-low biomass processing pipeline, low-input DNA sequencing libraries, as well as high-throughput sequencing technologies. Applied in unison, these methods have enabled comprehensive and meaningful characterization of the airborne microbial organismal dynamics found in the near-surface atmosphere.[13] Airborne microbial organisms also impact agricultural productivity, as bacterial and fungal species distributed by air movement act as plant blights.[14] Furthermore, atmospheric processes, such as cloud condensation and ice nucleation events were shown to depend on airborne microbial particles.[15] Therefore, understanding the dynamics of microbial organisms in air is crucial for insights into the atmosphere as an ecosystem, but also will inform on human wellbeing and respiratory health.[16]

In recent years, next generation DNA sequencing technologies, such as metabarcoding as well as coordinated metagenomics and metatranscriptomics studies, have been providing new insights into microbial ecosystem functioning, and the relationships that microorganisms maintain with their environment. There have been studies in soils,[17] the ocean,[18] [19] the human gut,[20] and elsewhere.[21] [22] [23]

In the atmosphere, though, microbial gene expression and metabolic functioning remain largely unexplored, in part due to low biomass and sampling difficulties. So far, metagenomics has confirmed high fungal, bacterial, and viral biodiversity,[24] [25] [26] [27] and targeted genomics and transcriptomics towards ribosomal genes has supported earlier findings about the maintenance of metabolic activity in aerosols[28] [29] and in clouds. In atmospheric chambers airborne bacteria have been consistently demonstrated to react to the presence of a carbon substrate by regulating ribosomal gene expressions.[30]

Types

Pollen grains

See also: Palynology. Effective pollen dispersal is vital for maintenance of genetic diversity and fundamental for connectivity between spatially separated populations.[31] An efficient transfer of the pollen guarantees successful reproduction in flowering plants. No matter how pollen is dispersed, the male-female recognition is possible by mutual contact of stigma and pollen surfaces. Cytochemical reactions are responsible for pollen binding to a specific stigma.[32]

Allergic diseases are considered to be one of the most important contemporary public health problems affecting up to 15–35% of humans worldwide.[33] There is a body of evidence suggesting that allergic reactions induced by pollen are on the increase, particularly in highly industrial countries.

Fungal spores

Fungi, a major element of atmospheric bioaerosols, are capable of existing and surviving in the air for extended periods of time.[34] Both the spores and the mycelium may be dangerous for people suffering from allergies, causing various health issues including asthma.[35] [36] Apart from their negative impact on human health, atmospheric fungi may be dangerous for plants as sources of infection.[37] [38] Moreover, fungal organisms may be capable of creating additional toxins that are harmful to humans and animals, such as endotoxins or mycotoxins.[39] [40]

Considering this aspect, aeromycological research is considered capable of predicting future symptoms of plant diseases in both crops and wild plants. Fungi capable of travelling extensive distances with wind despite natural barriers, such as tall mountains, may be particularly relevant to understanding the role of fungi in plant disease.[41] [42] [43] Notably, the presence of numerous fungal organisms pathogenic to plants has been determined in mountainous regions.

A wealth of correlative evidence suggests asthma is associated with fungi and triggered by elevated numbers of fungal spores in the environment.[44] Intriguing are reports of thunderstorm asthma. In a now classic study from the United Kingdom, an outbreak of acute asthma was linked to increases in Didymella exitialis ascospores and Sporobolomyces basidiospores associated with a severe weather event.[45] Thunderstorms are associated with spore plumes: when spore concentrations increase dramatically over a short period of time, for example from 20,000 spores/m3 to over 170,000 spores/m3 in 2 hours.[46] However, other sources consider pollen or pollution as causes of thunderstorm asthma.[47] Transoceanic and transcontinental dust events move large numbers of spores across vast distances and have the potential to impact public health,[48] and similar correlative evidence links dust blown off the Sahara with pediatric emergency room admissions on the island of Trinidad.[49]

Pteridophyte spores

Pteridophytes are vascular plants that disperse spores, such as fern spores. Pteridophyte spores are similar to pollen grains and fungal spores, and are also components of aeroplankton.[50] [51] Fungal spores usually rank first among bioaerosol constituents due to their count numbers which can reach to between NaN/m3, while pollen grains and fern spores can each reach to between NaN/m3.[52]

Arthropods

Many small animals, mainly arthropods (such as insects and spiders), are also carried upwards into the atmosphere by air currents and may be found floating several thousand feet up. Aphids, for example, are frequently found at high altitudes.

Ballooning, sometimes called kiting, is a process by which spiders, and some other small invertebrates, move through the air by releasing one or more gossamer threads to catch the wind, causing them to become airborne at the mercy of air currents.[53] [54] A spider (usually limited to individuals of a small species), or spiderling after hatching,[55] will climb as high as it can, stand on raised legs with its abdomen pointed upwards ("tiptoeing"),[56] and then release several silk threads from its spinnerets into the air. These automatically form a triangular shaped parachute[57] which carries the spider away on updrafts of winds where even the slightest of breezes will disperse the arachnid.[56] [57] The flexibility of their silk draglines can aid the aerodynamics of their flight, causing the spiders to drift an unpredictable and sometimes long distance.[58] Even atmospheric samples collected from balloons at altitude and ships mid-ocean have reported spider landings. Mortality is high.[59]

Enough lift for ballooning may occur, even in windless conditions, if an electrostatic charge gradient is present in the atmosphere.[60]

Nematodes

Nematodes (roundworms), the most common animal taxon, are also found among aeroplankton. Nematodes are an essential trophic link between unicellular organisms like bacteria, and larger organisms such as tardigrades, copepods, flatworms, and fishes. For nematodes, anhydrobiosis is a widespread strategy allowing them to survive unfavorable conditions for months and even years.[61] [62] Accordingly, nematodes can be readily dispersed by wind. However, as reported by Vanschoenwinkel et al., nematodes account for only about one per cent of wind-drifted animals. Among the habitats colonized by nematodes are those that are strongly exposed to wind erosion as e.g., the shorelines of permanent waters, soils, mosses, dead wood, and tree bark.[63] In addition, within a few days of forming temporary waters such as phytotelmata were shown to be colonized by numerous nematode species.[64]

Unicellular microorganisms

A stream of unicellular airborne microorganisms circles the planet above weather systems but below commercial air lanes.[65] Some microorganisms are swept up from terrestrial dust storms, but most originate from marine microorganisms in sea spray. In 2018, scientists reported that hundreds of millions of viruses and tens of millions of bacteria are deposited daily on every square meter around the planet.[66] [67]

The presence of airborne cyanobacteria and microalgae as well as their negative impacts on human health have been documented by many researchers worldwide. However, studies on cyanobacteria and microalgae are few compared with those on other bacteria and viruses. Research is especially lacking on the presence and taxonomic composition of cyanobacteria and microalgae near economically important water bodies with much tourism.[68] Research on airborne algae is especially important in tourist areas near water-bodies. Sunbathers are exposed to particularly high quantities of harmful cyanobacteria and microalgae. Additionally, harmful microalgae and cyanobacteria blooms tend to occur in both marine and freshwater reservoirs during summer.[69] [70] [71] [72] Previous work has shown that the Mediterranean Sea is dominated by the picocyanobacteria Synechococcus sp. and Synechocystis sp., which are responsible for the production of a group of hepatotoxins known as microcystins.[73] Because most tourism occurs in summer, many tourists are exposed to the most extreme negative impacts of airborne microalgae.

Airborne bacteria are emitted by most Earth surfaces (plants, oceans, land, and urban areas) to the atmosphere via a variety of mechanical processes such as aeolian soil erosion, sea spray production, or mechanical disturbances including anthropogenic activities.[74] Due to their relatively small size (the median aerodynamic diameter of bacteria-containing particles is around 2–4 μm), these can then be transported upward by turbulent fluxes[75] and carried by wind to long distances. As a consequence, bacteria are present in the air up to at least the lower stratosphere.[76] [77] Given that the atmosphere is a large conveyor belt that moves air over thousands of kilometers, microorganisms are disseminated globally.[78] [79] Airborne transport of microbes is therefore likely pervasive at the global scale, yet there have been only a limited number of studies that have looked at the spatial distribution of microbes across different geographical regions.[80] One of the main difficulties is linked with the low microbial biomass associated with a high diversity existing in the atmosphere outdoor (~102–105 cells/m3)[81] thus requiring reliable sampling procedures and controls. Furthermore, the site location and its environmental specificities have to be accounted for to some extent by considering chemical and meteorological variables.[82]

The environmental role of airborne cyanobacteria and microalgae is only partly understood. While present in the air, cyanobacteria and microalgae can contribute to ice nucleation and cloud droplet formation. Cyanobacteria and microalgae can also impact human health.[83] [84] [85] Depending on their size, airborne cyanobacteria and microalgae can be inhaled by humans and settle in different parts of the respiratory system, leading to the formation or intensification of numerous diseases and ailments, e.g., allergies, dermatitis, and rhinitis.[86] [87] According to Wiśniewska et al., these harmful microorganisms can constitute between 13% and 71% of sampled taxa. However, the interplay between microbes and atmospheric physical and chemical conditions is an open field of research that can only be fully addressed using multidisciplinary approaches.[88]

Airborne microalgae and cyanobacteria are the most poorly studied organisms in aerobiology and phycology.[89] This lack of knowledge may result from the lack of standard methods for both sampling and further analysis, especially quantitative analytical methods. Few studies have been performed to determine the number of cyanobacteria and microalgae in the atmosphere [90] [91] However, it was shown in 2012 that the average quantity of atmospheric algae is between 100 and 1000 cells per cubic meter of air. As of 2019, about 350 taxa of cyanobacteria and microalgae have been documented in the atmosphere worldwide.[92] Cyanobacteria and microalgae end up in the air as a consequence of their emission from soil, buildings, trees, and roofs.[93] [94]

Biological particles are known to represent a significant fraction (~20–70%) of the total number of aerosols > 0.2 μm, with large spatial and temporal variations.[95] [96] [97] [98] Among these, microorganisms are of particular interest in fields as diverse as epidemiology, including phytopathology,[99] bioterrorism, forensic science, and public health,[100] and environmental sciences, like microbial ecology,[101] [102] [103] meteorology and climatology.[104] [105] More precisely concerning the latter, airborne microorganisms contribute to the pool of particles nucleating the condensation and crystallization of water and they are thus potentially involved in cloud formation and in the triggering of precipitation.[106] Additionally, viable microbial cells act as chemical catalyzers interfering with atmospheric chemistry.[107] The constant flux of bacteria from the atmosphere to the Earth's surface due to precipitation and dry deposition can also affect global biodiversity, but they are rarely taken into account when conducting ecological surveys.[108] [109] [110] As stressed by these studies attempting to decipher and understand the spread of microbes over the planet,[111] [112] [113] concerted data are needed for documenting the abundance and distribution of airborne microorganisms, including at remote and altitudes sites.

Bioaerosols

Bioaerosols, known also as primary biological aerosols, are the subset of atmospheric particles that are directly released from the biosphere into the atmosphere. They include living and dead organisms (e.g., algae, archaea, bacteria[114] [115] [116]), dispersal units (e.g., fungal spores and plant pollen[117]), and various fragments or excretions (e.g., plant debris and brochosomes).[118] [119] [96] [120] [121] Bioaerosol particle diameters range from nanometers up to about a tenth of a millimeter. The upper limit of the aerosol particle size range is determined by rapid sedimentation, i.e., larger particles are too heavy to remain airborne for extended periods of time.[122] [123] [124] Bioaerosols include living and dead organisms as well as their fragments and excrements emitted from the biosphere into the atmosphere.[125] [124] Included are archaea, fungi, microalgae, cyanobacteria, bacteria, viruses, plant cell debris, and pollen.[125] [126] [127] [128]

Historically, the first investigations of the occurrence and dispersion of microorganisms and spores in the air can be traced back to the early 19th century.[129] [130] [131] Since then, the study of bioaerosols has come a long way, and air samples collected with aircraft, balloons, and rockets have shown that bioaerosols released from land and ocean surfaces can be transported over long distances and up to very high altitudes, i.e., between continents and beyond the troposphere.[132] [133] [134] [135] [136] [137] [138] [139] [140] [79]

Bioaerosols play a key role in the dispersal of reproductive units from plants and microbes (pollen, spores, etc.), for which the atmosphere enables transport over geographic barriers and long distances. Bioaerosols are thus highly relevant for the spread of organisms, allowing genetic exchange between habitats and geographic shifts of biomes. They are central elements in the development, evolution, and dynamics of ecosystems.

Dispersal

Dispersal is a vital component of an organism's life-history,[141] and the potential for dispersal determines the distribution, abundance, and thus, the community dynamics of species at different sites.[142] [143] [144] A new habitat must first be reached before filters such as organismal abilities and adaptations, the quality of a habitat, and the established biological community determine the colonization efficiency of a species.[145] While larger animals can cover distances on their own and actively seek suitable habitats, small (<2 mm) organisms are often passively dispersed, resulting in their more ubiquitous occurrence.[146] While active dispersal accounts for rather predictable distribution patterns, passive dispersal leads to a more randomized immigration of organisms. Mechanisms for passive dispersal are the transport on (epizoochory) or in (endozoochory) larger animals (e.g., flying insects, birds, or mammals) and the erosion by wind.[147]

A propagule is any material that functions in propagating an organism to the next stage in its life cycle, such as by dispersal. The propagule is usually distinct in form from the parent organism. Propagules are produced by plants (in the form of seeds or spores), fungi (in the form of spores), and bacteria (for example endospores or microbial cysts).[148] Often cited as an important requirement for effective wind dispersal is the presence of propagules (e.g., resting eggs, cysts, ephippia, juvenile and adult resting stages),[149] [150] which also enables organisms to survive unfavorable environmental conditions until they enter a suitable habitat. These dispersal units can be blown from surfaces such as soil, moss, and the desiccated sediments of temporary or intermittent waters. The passively dispersed organisms are typically pioneer colonizers.[151] [152] [153]

However, wind-drifted species vary in their vagility (probability to be transported with the wind),[154] with the weight and form of the propagules, and therefore, the wind speed required for their transport,[155] determining the dispersal distance. For example, in nematodes, resting eggs are less effectively transported by wind than other life stages,[156] while organisms in anhydrobiosis are lighter and thus more readily transported than hydrated forms.[157] [158] Because different organisms are, for the most part, not dispersed over the same distances, source habitats are also important, with the number of organisms contained in air declining with increasing distance from the source system.[159] The distances covered by small animals range from a few meters, to hundreds, to thousands of meters. While the wind dispersal of aquatic organisms is possible even during the wet phase of a transiently aquatic habitat, during the dry stages a larger number of dormant propagules are exposed to wind and thus dispersed.[160] Freshwater organisms that must "cross the dry ocean" to enter new aquatic island systems will be passively dispersed more successfully than terrestrial taxa. Numerous taxa from both soil and freshwater systems have been captured from the air (e.g., bacteria, several algae, ciliates, flagellates, rotifers, crustaceans, mites, and tardigrades).[161] While these have been qualitatively well studied, accurate estimates of their dispersal rates are lacking.

Transport and distribution

Once aerosolized, microbial cells enter the planetary boundary layer, defined as the air layer near the ground directly influenced by the planetary surface. The concentration and taxonomic diversity of airborne microbial communities in the planetary boundary layer has been recently described,[162] though the functional potential of airborne microbial communities remains unknown.

From the planetary boundary layer, the microbial community might eventually be transported upwards by air currents into the free troposphere (air layer above the planetary boundary layer) or even higher into the stratosphere.[163] [164] [77] [165] Microorganisms might undergo a selection process during their way up into the troposphere and the stratosphere.[166]

Subject to gravity, aerosols (or particulate matter) as well as bioaerosols become concentrated in the lower part of the troposphere that is called the planetary boundary layer. Microbial concentrations thus usually show a vertical stratification from the bottom to the top of the troposphere with average estimated bacterial concentrations of 900 to 2 × 107 cells per cubic metre in the planetary boundary layer[2] [167] [168] [169] [170] and 40 to 8 × 104 cells per cubic metre in the highest part of the troposphere called the free troposphere.[171] [172] [173] The troposphere is the most dynamic layer in terms of chemistry and physics of aerosols and harbors complex chemical reactions and meteorological phenomena that lead to the coexistence of a gas phase, liquid phases (i.e., cloud, rain, and fog water) and solid phases (i.e., microscopic particulate matter, sand dust). The various atmospheric phases represent multiple biological niches.

Possible processes in the way atmospheric microbial communities can distribute themselves have recently been investigated in meteorology,[80] [174] [175] seasons,[176] [177] [112] [178] surface conditions and global air circulation.[179] [168] [180] [102] [181]

Over space and time

Microorganisms attached to aerosols can travel intercontinental distances, survive, and further colonize remote environments. Airborne microbes are influenced by environmental and climatic patterns that are predicted to change in the near future, with unknown consequences.[182] Airborne microbial communities play significant roles in public health and meteorological processes,[183] [184] [8] [185] [186] so it is important to understand how these communities are distributed over time and space.

Most studies have focused on laboratory cultivation to identify possible metabolic functions of microbial strains of atmospheric origin, mainly from cloud water.[187] [188] [189] [190] Given that cultivable organisms represent about 1% of the entire microbial community,[191] culture-independent techniques and especially metagenomic studies applied to atmospheric microbiology have the potential to provide additional information on the selection and genetic adaptation of airborne microorganisms.

There are some metagenomic studies on airborne microbial communities over specific sites.[192] [193] [194] [13] [195] Metagenomic investigations of complex microbial communities in many ecosystems (for example, soil, seawater, lakes, feces and sludge) have provided evidence that microorganism functional signatures reflect the abiotic conditions of their environment, with different relative abundances of specific microbial functional classes.[196] [197] [198] [199] This observed correlation of microbial-community functional potential and the physical and chemical characteristics of their environments could have resulted from genetic modifications (microbial adaptation[200] [201] [202] [195]) and/or physical selection. The latter refers to the death of sensitive cells and the survival of resistant or previously adapted cells. This physical selection can occur when microorganisms are exposed to physiologically adverse conditions.[203]

The presence of a specific microbial functional signature in the atmosphere has not been investigated yet. Microbial strains of airborne origin have been shown to survive and develop under conditions typically found in cloud water (i.e., high concentrations of H2O2, typical cloud carbonaceous sources, ultraviolet – UV – radiation etc.[204] [190] While atmospheric chemicals might lead to some microbial adaptation, physical and unfavorable conditions of the atmosphere such as UV radiation, low water content and cold temperatures might select which microorganisms can survive in the atmosphere. From the pool of microbial cells being aerosolized from Earth's surfaces, these adverse conditions might act as a filter in selecting cells already resistant to unfavorable physical conditions. Fungal cells and especially fungal spores might be particularly adapted to survive in the atmosphere due to their innate resistance[205] and might behave differently than bacterial cells. Still, the proportion and nature (i.e., fungi versus bacteria) of microbial cells that are resistant to the harsh atmospheric conditions within airborne microbial communities are unknown.

Airborne microbial transport is central to dispersal outcomes[206] and several studies have demonstrated diverse microbial biosignatures are recoverable from the atmosphere. Microbial transport has been shown to occur across inter-continental distances above terrestrial habitats.[207] [208] [179] Variation has been recorded seasonally, with underlying land use,[176] and due to stochastic weather events such as dust storms.[209] There is evidence specific bacterial taxa (e.g., Actinomycetota and some Gammaproteobacteria) are preferentially aerosolized from oceans.[210]

Over urban areas

As a result of rapid industrialization and urbanization, global megacities have been impacted by extensive and intense particulate matter pollution events,[211] which have potential human health consequences.[212] [213] [214] Severe particulate matter pollution is associated with chronic obstructive pulmonary disease and asthma, as well as risks for early death.[215] [216] [217] [218] While the chemical components of particulate matter pollution and their impacts on human health have been widely studied,[219] the potential impact of pollutant-associated microbes remains unclear. Airborne microbial exposure, including exposure to dust-associated organisms, has been established to both protect against and exacerbate certain diseases.[220] [221] [222] Understanding the temporal dynamics of the taxonomic and functional diversity of microorganisms in urban air, especially during smog events, will improve understanding of the potential microbe-associated health consequences.[223] [224]

Recent advances in airborne particle DNA extraction and metagenomic library preparation have enabled low biomass environments to be subject to shotgun sequencing analysis. In 2020, Qin et al. used shotgun sequencing analysis to reveal a great diversity of microbial species and antibiotic resistant genes in Beijing's particulate matter, largely consistent with a recent study.[225] The data suggest that potential pathogen and antibiotic resistance burden increases with increasing pollution levels and that severe smog events promote the exposure. In addition, the particulate matter also contained several bacteria that harbored antibiotic resistant genes flanked by mobile genetic elements, which could be associated with horizontal gene transfer. Many of these bacteria were typical or putative members of the human microbiome.

Clouds

The outdoor atmosphere harbors diverse microbial assemblages composed of bacteria, fungi and viruses[226] whose functioning remains largely unexplored. While the occasional presence of human pathogens or opportunists can cause potential hazard,[227] [228] in general the vast majority of airborne microbes originate from natural environments like soil or plants, with large spatial and temporal variations of biomass and biodiversity.[176] [229] Once ripped off and aerosolized from surfaces by mechanical disturbances such as those generated by wind, raindrop impacts or water bubbling,[230] [74] microbial cells are transported upward by turbulent fluxes.[75] They remain aloft for an average of ~3 days,[231] a time long enough for being transported across oceans and continents[163] [3] [80] until being finally deposited, eventually helped by water condensation and precipitation processes; microbial aerosols themselves can contribute to form clouds and trigger precipitation by serving as cloud condensation nuclei[232] and ice nuclei.[233] [6]

Living airborne microorganisms may end up concretizing aerial dispersion by colonizing their new habitat,[234] provided that they survive their journey from emission to deposition. Bacterial survival is indeed naturally impaired during atmospheric transport,[235] [236] but a fraction remains viable.[237] [238] At high altitude, the peculiar environments offered by cloud droplets are thus regarded in some aspects as temporary microbial habitats, providing water and nutrients to airborne living cells.[239] [240] [241] In addition, the detection of low levels of heterotrophy[242] raises questions about microbial functioning in cloud water and its potential influence on the chemical reactivity of these complex and dynamic environments.[107] The metabolic functioning of microbial cells in clouds is still albeit unknown, while fundamental for apprehending microbial life conditions during long distance aerial transport and their geochemical and ecological impacts.

Aerosols affect cloud formation, thereby influencing sunlight irradiation and precipitation, but the extent to which and the manner in which they influence climate remains uncertain.[243] Marine aerosols consist of a complex mixture of sea salt, non-sea-salt sulfate and organic molecules and can function as nuclei for cloud condensation, influencing the radiation balance and, hence, climate.[244] [245] For example, biogenic aerosols in remote marine environments (for example, the Southern Ocean) can increase the number and size of cloud droplets, having similar effects on climate as aerosols in highly polluted regions.[246] [247] [248] Specifically, phytoplankton emit dimethylsulfide, and its derivate sulfate promotes cloud condensation.[249] Understanding the ways in which marine phytoplankton contribute to aerosols will allow better predictions of how changing ocean conditions will affect clouds and feed back on climate. In addition, the atmosphere itself contains about 1022 microbial cells, and determining the ability of atmospheric microorganisms to grow and form aggregates will be valuable for assessing their influence on climate.[250] [251]

After the tantalizing detection of phosphine (PH3) in the atmosphere of the planet Venus, and in the absence of a known and plausible chemical mechanism to explain the formation of this molecule, Greaves et al. speculated in 2020 that microorganisms might be present in suspension in the Venusian atmosphere.[252] They have formulated the hypothesis of the microbial formation of phosphine, envisaging the possibility of a liveable window in the Venusian clouds at a certain altitude with an acceptable temperature range for microbial life. However, in 2021 Hallsworth et al. examined the conditions required to support the life of extremophile microorganisms in the clouds at high altitude in the Venusian atmosphere where favorable temperature conditions might prevail. Beside the presence of sulfuric acid in the clouds which already represent a major challenge for the survival of most of microorganisms, they came to the conclusion that the Venusian atmosphere is too dry to host microbial life. They determined a water activity ≤ 0.004, two orders of magnitude below the 0.585 limit for known extremophiles.[253]

Airborne microbiomes

See also: Microbiome.

While the physical and chemical properties of airborne particulate matter have been extensively studied, their associated airborne microbiome remains largely unexplored.[254] Microbiomes are defined as characteristic microbial communities, which include prokaryotes, fungi, protozoa, other micro-eukaryotes and viruses, that occupy well-defined habitats.[255] The term microbiome is broader than other terms, for example, microbial communities, microbial population, microbiota or microbial flora, as microbiome refers to both its composition (the microorganisms involved) and its functions (their members' activities and interactions with the host/environment), which contribute to ecosystem functions.[256]

Throughout Earth's history, microbial communities have changed the climate, and climate has shaped microbial communities.[257] Microorganisms can modify ecosystem processes or biogeochemistry on a global scale, and we start to uncover their role and potential involvement in changing the climate.[258] However, the effects of climate change on microbial communities (i.e., diversity, dynamics, or distribution) are rarely addressed.[259] In the case of fungal aerobiota, its composition is likely influenced by dispersal ability, rather than season or climate.[260] Indeed, the origin of air masses from marine, terrestrial, or anthropogenic-impacted environments, mainly shapes the atmospheric air microbiome.[179] However, recent studies have shown that meteorological factors and seasonality influence the composition of airborne bacterial communities.[261] [262] This evidence suggests that climatic conditions may act as an environmental filter for the aeroplankton, selecting a subset of species from the regional pool, and raises the question of the relative importance of the different factors affecting both bacterial and eukaryal aeroplankton.

In 2020, Archer et al. reported evidence for a dynamic microbial presence at the ocean–atmosphere interface at the Great Barrier Reef, and identified air mass trajectories over oceanic and continental surfaces associated with observed shifts in airborne bacterial and fungal diversity. Relative abundance of shared taxa between air and coral microbiomes varied between 2.2 and 8.8% and included those identified as part of the core coral microbiome. Above marine systems, the abundance of microorganisms decreases exponentially with distance from land,[102] but relatively little is known about potential patterns in biodiversity for airborne microorganisms above the oceans. Here we test the hypothesis that persistent microbial inputs to the ocean–atmosphere interface of the Great Barrier Reef ecosystem vary according to surface cover (i.e. land vs. ocean) during transit of the air-mass.[263]

Airborne DNA

In 2021, researchers demonstrated that environmental DNA (eDNA) can be collected from air and used to identify mammals.[264] [265] [266] [267] In 2023, scientists developed a specialized sampling probe and aircraft surveys to assess biodiversity of multiple taxa, including mammals, using air eDNA.[268]

Gallery

See also

General reference

External links

Notes and References

  1. A. C. Hardy and P. S. Milne (1938) Studies in the Distribution of Insects by Aerial Currents. Journal of Animal Ecology, 7(2):199-229
  2. 10.1016/j.scitotenv.2017.05.049. Meteorological factors had more impact on airborne bacterial communities than air pollutants. 2017. Zhen. Quan. Deng. Ye. Wang. Yaqing. Wang. Xiaoke. Zhang. Hongxing. Sun. Xu. Ouyang. Zhiyun. Science of the Total Environment. 601-602. 703–712. 28577405. 2017ScTEn.601..703Z. 4576024 .
  3. 10.1093/femsec/fiy031. Aeolian dispersal of bacteria in southwest Greenland: Their sources, abundance, diversity and physiological states. 2018. Šantl-Temkiv. Tina. Gosewinkel. Ulrich. Starnawski. Piotr. Lever. Mark. Finster. Kai. FEMS Microbiology Ecology. 94. 4. 29481623. free. 20.500.11850/266148. free.
  4. 10.3389/fmicb.2016.00772. free. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere. 2016. Klein. Ann M.. Bohannan. Brendan J. M.. Jaffe. Daniel A.. Levin. David A.. Green. Jessica L.. Frontiers in Microbiology. 7. 772. 27252689. 4878314.
  5. 10.1126/science.aai9214. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. 2017. Pecl. Gretta T.. Araújo. Miguel B.. Bell. Johann D.. Blanchard. Julia. Bonebrake. Timothy C.. Chen. I-Ching. Clark. Timothy D.. Colwell. Robert K.. Danielsen. Finn. Evengård. Birgitta. Falconi. Lorena. Ferrier. Simon. Frusher. Stewart. Garcia. Raquel A.. Griffis. Roger B.. Hobday. Alistair J.. Janion-Scheepers. Charlene. Jarzyna. Marta A.. Jennings. Sarah. Lenoir. Jonathan. Linnetved. Hlif I.. Martin. Victoria Y.. McCormack. Phillipa C.. McDonald. Jan. Mitchell. Nicola J.. Mustonen. Tero. Pandolfi. John M.. Pettorelli. Nathalie. Popova. Ekaterina. Robinson. Sharon A.. Science. 355. 6332. 28360268. 10019.1/120851. 206653576. 1. free.
  6. 10.1126/science.1227279. Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S.. 2013. Creamean. J. M.. Suski. K. J.. Rosenfeld. D.. Cazorla. A.. Demott. P. J.. Sullivan. R. C.. White. A. B.. Ralph. F. M.. Minnis. P.. Comstock. J. M.. Tomlinson. J. M.. Prather. K. A.. Science. 339. 6127. 1572–1578. 23449996. 2013Sci...339.1572C. 2276891.
  7. 10.1111/j.1462-2920.2009.01926.x. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. 2009. Hervàs. Anna. Camarero. Lluís. Reche. Isabel. Casamayor. Emilio O.. Environmental Microbiology. 11. 6. 1612–1623. 19453609.
  8. 10.1126/science.1072678. Aerial Dispersal of Pathogens on the Global and Continental Scales and Its Impact on Plant Disease. 2002. Brown. James K. M.. Hovmøller. Mogens S.. Science. 297. 5581. 537–541. 12142520. 2002Sci...297..537B. 4207803.
  9. 10.1021/acs.est.5b06348. Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean. 2016. Mazar. Yinon. Cytryn. Eddie. Erel. Yigal. Rudich. Yinon. Environmental Science & Technology. 50. 8. 4194–4202. 27001166. 2016EnST...50.4194M.
  10. 10.1007/s12229-015-9151-9. The Ecology and Natural History of Foliar Bacteria with a Focus on Tropical Forests and Agroecosystems. 2015. Griffin. Eric A.. Carson. Walter P.. The Botanical Review. 81. 2. 105–149. 14608948.
  11. 10.1111/1365-2745.13288. Partitioning between atmospheric deposition and canopy microbial nitrification into throughfall nitrate fluxes in a Mediterranean forest. 2020. Guerrieri. Rossella. Lecha. Lucas. Mattana. Stefania. Cáliz. Joan. Casamayor. Emilio O.. Barceló. Anna. Michalski. Greg. Peñuelas. Josep. Avila. Anna. Mencuccini. Maurizio. Journal of Ecology. 108. 2. 626–640. 203880534. free. 11585/790081. free.
  12. 10.1016/j.atmosres.2016.07.018. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. 2016. Fröhlich-Nowoisky. Janine. Kampf. Christopher J.. Weber. Bettina. Huffman. J. Alex. Pöhlker. Christopher. Andreae. Meinrat O.. Lang-Yona. Naama. Burrows. Susannah M.. Gunthe. Sachin S.. Elbert. Wolfgang. Su. Hang. Hoor. Peter. Thines. Eckhard. Hoffmann. Thorsten. Després. Viviane R.. Pöschl. Ulrich. Atmospheric Research. 182. 346–376. 2016AtmRe.182..346F. free.
  13. 10.1073/pnas.1908493116. Microbial communities in the tropical air ecosystem follow a precise diel cycle. 2019. Gusareva. Elena S.. Acerbi. Enzo. Lau. Kenny J. X.. Luhung. Irvan. Premkrishnan. Balakrishnan N. V.. Kolundžija. Sandra. Purbojati. Rikky W.. Wong. Anthony. Houghton. James N. I.. Miller. Dana. Gaultier. Nicolas E.. Heinle. Cassie E.. Clare. Megan E.. Vettath. Vineeth Kodengil. Kee. Carmon. Lim. Serene B. Y.. Chénard. Caroline. Phung. Wen Jia. Kushwaha. Kavita K.. Nee. Ang Poh. Putra. Alexander. Panicker. Deepa. Yanqing. Koh. Hwee. Yap Zhei. Lohar. Sachin R.. Kuwata. Mikinori. Kim. Hie Lim. Yang. Liang. Uchida. Akira. Drautz-Moses. Daniela I.. Proceedings of the National Academy of Sciences. 116. 46. 23299–23308. 31659049. 6859341. 2019PNAS..11623299G . 1. free.
  14. 10.1139/b95-128. Classification of airborne plant pathogens based on sporulation and infection characteristics. 1995. Sache. Ivan. Vallavieille-Pope. Claude de. Canadian Journal of Botany. 73. 8. 1186–1195.
  15. 10.1126/sciadv.1501630. Ice-nucleating bacteria control the order and dynamics of interfacial water. 2016. Pandey. Ravindra. Usui. Kota. Livingstone. Ruth A.. Fischer. Sean A.. Pfaendtner. Jim. Backus. Ellen H. G.. Nagata. Yuki. Fröhlich-Nowoisky. Janine. Schmüser. Lars. Mauri. Sergio. Scheel. Jan F.. Knopf. Daniel A.. Pöschl. Ulrich. Bonn. Mischa. Weidner. Tobias. Science Advances. 2. 4. e1501630. 27152346. 4846457. 2016SciA....2E1630P.
  16. 10.1038/s41598-020-78604-8. Taxonomic composition and seasonal dynamics of the air microbiome in West Siberia. 2020. Gusareva. Elena S.. Gaultier. Nicolas P. E.. Premkrishnan. Balakrishnan N. V.. Kee. Carmon. Lim. Serene Boon Yuean. Heinle. Cassie E.. Purbojati. Rikky W.. Nee. Ang Poh. Lohar. Sachin R.. Yanqing. Koh. Kharkov. Vladimir N.. Drautz-Moses. Daniela I.. Stepanov. Vadim A.. Schuster. Stephan C.. Scientific Reports. 10. 1. 21515. 33299064. 7726148. 2020NatSR..1021515G. 228089556. Modified text from this source, which is available under a Creative Commons Attribution 4.0 International License.
  17. 10.1038/ismej.2011.95. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. 2012. Baldrian. Petr. Kolařík. Miroslav. Štursová. Martina. Kopecký. Jan. Valášková. Vendula. Větrovský. Tomáš. Žifčáková. Lucia. Šnajdr. Jaroslav. Rídl. Jakub. Vlček. Čestmír. Voříšková. Jana. The ISME Journal. 6. 2. 248–258. 21776033. 3260513.
  18. 10.1038/ismej.2010.141. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. 2011. Gifford. Scott M.. Sharma. Shalabh. Rinta-Kanto. Johanna M.. Moran. Mary Ann. The ISME Journal. 5. 3. 461–472. 20844569. 3105723.
  19. 10.1371/journal.pone.0003042. Detection of Large Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial Communities. 2008. Gilbert. Jack A.. Field. Dawn. Huang. Ying. Edwards. Rob. Li. Weizhong. Gilna. Paul. Joint. Ian. PLOS ONE. 3. 8. e3042. 18725995. 2518522. 2008PLoSO...3.3042G. free.
  20. Franzosa . E. A. . Morgan . X. C. . Segata . N. . Waldron . L. . Reyes . J. . Earl . A. M. . Giannoukos . G. . Boylan . M. R. . Ciulla . D. . Gevers . D. . Izard . J. . Garrett . W. S. . Wendy Garrett . Chan . A. T. . Huttenhower . C. . 2014 . Relating the metatranscriptome and metagenome of the human gut . Proceedings of the National Academy of Sciences . 111 . 22 . E2329–E2338 . 2014PNAS..111E2329F . 10.1073/pnas.1319284111 . 4050606 . 24843156 . free.
  21. 10.1186/2049-2618-2-17. The Amazon continuum dataset: Quantitative metagenomic and metatranscriptomic inventories of the Amazon River plume, June 2010. 2014. Satinsky. Brandon M.. Zielinski. Brian L.. Doherty. Mary. Smith. Christa B.. Sharma. Shalabh. Paul. John H.. Crump. Byron C.. Moran. Mary. Microbiome. 2. 17. 24883185. 4039049 . free .
  22. 10.1038/ismej.2014.245. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. 2015. Chen. Lin-Xing. Hu. Min. Huang. Li-nan. Hua. Zheng-Shuang. Kuang. Jia-Liang. Li. Sheng-jin. Shu. Wen-Sheng. The ISME Journal. 9. 7. 1579–1592. 25535937. 4478699.
  23. See also: Pollen DNA barcoding
  24. 10.1007/s00248-014-0517-z. Metagenomic Analysis of the Airborne Environment in Urban Spaces. 2015. Be. Nicholas A.. Thissen. James B.. Fofanov. Viacheslav Y.. Allen. Jonathan E.. Rojas. Mark. Golovko. George. Fofanov. Yuriy. Koshinsky. Heather. Jaing. Crystal J.. Microbial Ecology. 69. 2. 346–355. 25351142. 4312561.
  25. 10.1128/JVI.00293-12. Metagenomic Characterization of Airborne Viral DNA Diversity in the Near-Surface Atmosphere. 2012. Whon. T. W.. Kim. M.-S.. Roh. S. W.. Shin. N.-R.. Lee. H.-W.. Bae. J.-W.. Journal of Virology. 86. 15. 8221–8231. 22623790. 3421691.
  26. 10.1371/journal.pone.0081862. A Metagenomic Framework for the Study of Airborne Microbial Communities. 2013. Yooseph. Shibu. Andrews-Pfannkoch. Cynthia. Tenney. Aaron. McQuaid. Jeff. Williamson. Shannon. Thiagarajan. Mathangi. Brami. Daniel. Zeigler-Allen. Lisa. Hoffman. Jeff. Goll. Johannes B.. Fadrosh. Douglas. Glass. John. Adams. Mark D.. Friedman. Robert. Venter. J. Craig. PLOS ONE. 8. 12. e81862. 24349140. 3859506. 2013PLoSO...881862Y. free.
  27. 10.1016/j.scitotenv.2016.12.081. Investigation of diverse bacteria in cloud water at Mt. Tai, China. 2017. Xu. Caihong. Wei. Min. Chen. Jianmin. Sui. Xiao. Zhu. Chao. Li. Jiarong. Zheng. Lulu. Sui. Guodong. Li. Weijun. Wang. Wenxing. Zhang. Qingzhu. Mellouki. Abdelwahid. Science of the Total Environment. 580. 258–265. 28011017. 2017ScTEn.580..258X. 27205968 .
  28. 10.3389/fmicb.2016.00772. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere. 2016. Klein. Ann M.. Bohannan. Brendan J. M.. Jaffe. Daniel A.. Levin. David A.. Green. Jessica L.. Frontiers in Microbiology. 7. 772. 27252689. 4878314. free.
  29. 10.5194/bg-12-6337-2015. Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest. 2015. Womack. A. M.. Artaxo. P. E.. Ishida. F. Y.. Mueller. R. C.. Saleska. S. R.. Wiedemann. K. T.. Bohannan. B. J. M.. Green. J. L.. Biogeosciences. 12. 21. 6337–6349. 2015BGeo...12.6337W. free.
  30. 10.1021/ez500245y. Substrate-Dependent rRNA Production in an Airborne Bacterium. 2014. Krumins. Valdis. Mainelis. Gediminas. Kerkhof. Lee J.. Fennell. Donna E.. Environmental Science & Technology Letters. 1. 9. 376–381.
  31. 10.1111/j.1365-294X.2007.03448.x. Long distance pollen-mediated gene flow at a landscape level: The weed beet as a case study. 2007. Fénart. Stéphane. Austerlitz. Frédéric. Cuguen. Joël. Arnaud. Jean-François. Molecular Ecology. 16. 18. 3801–3813. 17850547. 6382777.
  32. 10.1105/tpc.015800. Pollen and Stigma Structure and Function: The Role of Diversity in Pollination. 2004. Edlund. A. F.. Swanson. R.. Preuss. D.. The Plant Cell Online. 16. Suppl. S84–S97. 15075396. 2643401.
  33. Book: World Allergy Organization (WAO) White Book on Allergy. 2011. 9780615461823.
  34. Book: Environmental Microbiology. 9780080919409. Pepper. Ian L.. Gerba. Charles P.. Gentry. Terry J.. Maier. Raina M.. 13 October 2011. Academic Press .
  35. 10.1159/000066780. Immunobiology of Fungal Allergens. 2002. Kurup. Viswanath P.. Shen. Horng-Der. Vijay. Hari. International Archives of Allergy and Immunology. 129. 3. 181–188. 12444314. 6588557.
  36. 10.1177/1420326X04033843. Airborne Fungi and Actinomycetes Concentrations in the Air of Eskisehir City (Turkey). 2004. Asan. Ahmet. Ilhan. Semra. Sen. Burhan. Erkara. Ismuhan Potoglu. Filik. Cansu. Cabuk. Ahmet. Demirel. Rasime. Ture. Mevlut. Okten. Suzan Sarica. Tokur. Suleyman. Indoor and Built Environment. 13. 63–74. 84241303.
  37. 10.1007/s11629-013-2704-7. Airborne fungal spores of subalpine zone of the Karkonosze and Izerskie Mountains (Poland). 2013. Pusz. Wojciech. Kita. Włodzimierz. Dancewicz. Andrzej. Weber. Ryszard. Journal of Mountain Science. 10. 6. 940–952. 129157372.
  38. Jędryczka . Małgorzata . Aeromycology: studies of fungi in aeroplankton . Folia Biologica et Oecologica . 25 Nov 2014 . 10 . 18–26 . 10.2478/fobio-2014-0013 . 11089/9908 . 37133585 . 1730-2366 . pl . 5 Aug 2021. free .
  39. 10.1007/s10453-012-9276-9. Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site. 2013. Raisi. Louisa. Aleksandropoulou. Victoria. Lazaridis. Mihalis. Katsivela. Eleftheria. Aerobiologia. 29. 2. 233–248. 84305807.
  40. 10.1007/s10661-021-09090-2. Airborne fungi in Longyearbyen area (Svalbard, Norway) — case study. 2021. Pusz. Wojciech. Urbaniak. Jacek. Environmental Monitoring and Assessment. 193. 5. 290. 33890180. 8062393. Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  41. Book: 10.1007/1-4020-5497-1_8. Epidemiology of Puccinia Triticina in Gangetic Plain and planned containment of crop losses. Wheat Production in Stressed Environments. Developments in Plant Breeding. 2007. Nagarajan. S.. Saharan. M. S.. 12. 71–76. 978-1-4020-5496-9.
  42. 10.1016/j.cropro.2011.04.015. First documentation on status of barley diseases from the high altitude cold arid Trans-Himalayan Ladakh region of India. 2011. Vaish. S.S.. Bilal Ahmed. Sheikh. Prakash. K.. Crop Protection. 30. 9. 1129–1137.
  43. 10.1007/s10661-017-6243-5. Analysis of selected fungi variation and its dependence on season and mountain range in southern Poland—key factors in drawing up trial guidelines for aeromycological monitoring. 2017. Pusz. Wojciech. Weber. Ryszard. Dancewicz. Andrzej. Kita. Włodzimierz. Environmental Monitoring and Assessment. 189. 10. 526. 28952055. 29293277. 5614908.
  44. Denning, D.W., O'driscoll, B.R., Hogaboam, C.M., Bowyer, P. and Niven, R.M. (2006) "The link between fungi and severe asthma: a summary of the evidence". European Respiratory Journal, 27(3): 615–626. .
  45. Packe, G.E. and Ayres, J. (1985) "Asthma outbreak during a thunderstorm". The Lancet, 326(8448): 199–204. .
  46. Burch, M. and Levetin, E., 2002. Effects of meteorological conditions on spore plumes. International journal of biometeorology, 46(3), pp.107–117. .
  47. Bernstein, J.A., Alexis, N., Barnes, C., Bernstein, I.L., Nel, A., Peden, D., Diaz-Sanchez, D., Tarlo, S.M. and Williams, P.B., 2004. Health effects of air pollution. Journal of allergy and clinical immunology, 114(5), pp.1116-1123. .
  48. Kellogg CA, Griffin DW (2006) "Aerobiology and the global transport of desert dust". Trends Ecol Evol, 21: 638–644. .
  49. Gyan, K., Henry, W., Lacaille, S., Laloo, A., Lamsee-Ebanks, C., McKay, S., Antoine, R.M. and Monteil, M.A. (2005) "African dust clouds are associated with increased paediatric asthma accident and emergency admissions on the Caribbean island of Trinidad". International Journal of Biometeorology, 49(6): 371–376. .
  50. 10.2307/3454401. 3454401. Outdoor Allergens. 2000. Burge. Harriet A.. Rogers. Christine A.. Environmental Health Perspectives. 108. Suppl 4. 653–659. 10931783. 1637672. 16407560.
  51. Weryszko-Chmielewska, E. (2007). "Zakres badań i znaczenie aerobiologii". Aerobiologia. Lublin: Wydawnictwo Akademii Rolniczej, pages 6-10 (in Polish).
  52. Book: 10.1007/978-94-007-4881-1_1. Introduction. Allergenic Pollen. 2013. Cecchi. Lorenzo. 1–7. 978-94-007-4880-4.
  53. Book: Heinrichs . Ann . Spiders . 21 . 2004 . Compass Point Books . 9780756505905 . 54027960 . registration .
  54. Valerio . C.E. . 1977 . Population structure in the spider Achaearranea Tepidariorum (Aranae, Theridiidae) . Journal of Arachnology . 3 . 3 . 185–190 . 3704941 .
  55. Bond . Jason Edward . Systematics and Evolution of the Californian Trapdoor Spider Genus Aptostichus Simon (Araneae: Mygalomorphae: Euctenizidae) . 22 September 1999 . 10919/29114 . 10.1.1.691.8754 .
  56. Weyman . G.S. . 1995 . Laboratory studies of the factors stimulating ballooning behavior by Linyphiid spiders (Araneae, Linyphiidae) . Journal of Arachnology . 23 . 2 . 75–84 . 3705494 .
  57. Schneider . J.M. . Roos, J. . Lubin, Y. . Henschel, J.R. . October 2001 . Dispersal of Stegodyphus Dumicola (Araneae, Eresidae): They do balloon after all! . Journal of Arachnology . 29 . 1 . 114–116 . 10.1636/0161-8202(2001)029[0114:DOSDAE]2.0.CO;2 . 4707752 .
  58. Web site: Leap forward for 'flying' spiders . BBC News. 23 July 2014. 12 July 2006.
  59. Morley . Erica L. . Robert . Daniel . Electric Fields Elicit Ballooning in Spiders . Current Biology . July 2018 . 28 . 14 . 2324–2330.e2 . 10.1016/j.cub.2018.05.057 . 29983315 . 6065530 .
  60. Gorham. Peter. Ballooning spiders: The case for electrostatic flight . Sep 2013. 1309.4731 . physics.bio-ph.
  61. Hendriksen, N. B. (1982) "Anhydrobiosis in nematodes: studies on Plectus sp." In: New trends in soil biology (Eds: Lebrun, P. André, H. M., De Medts, A., Grégoire-Wibo, C. Wauthy, G.) pages 387–394, Louvain-la-Neurve, Belgium.
  62. Watanabe, M. (2006). "Anhydrobiosis in invertebrates". Applied Entomology and Zoology, 41(1): 15–31. .
  63. Andrássy, I. (2009) "Free-living nematodes of Hungary III (Nematoda errantia)". Pedozoologica Hungarica No. 5. Hungarian Natural History Museum and Systematic Zoology, Research Group of the Hungarian Academy of Sciences.
  64. 10.1163/15685411-00002913. Nematode colonisation of artificial water-filled tree holes. 2015. Ptatscheck. Christoph. Dümmer. Birgit. Traunspurger. Walter. Nematology. 17. 8. 911–921.
  65. https://www.smithsonianmag.com/science-nature/living-bacteria-are-riding-earths-air-currents-180957734/ Living Bacteria Are Riding Earth's Air Currents
  66. News: Robbins . Jim . Trillions Upon Trillions of Viruses Fall From the Sky Each Day . 13 April 2018 . . 14 April 2018.
  67. Reche . Isabel . D'Orta . Gaetano . Mladenov . Natalie . Winget . Danielle M . Suttle . Curtis A . Deposition rates of viruses and bacteria above the atmospheric boundary layer . ISME Journal . 12 . 4 . 1154–1162 . 29 January 2018 . 10.1038/s41396-017-0042-4 . 29379178 . 5864199.
  68. 10.1371/journal.pone.0238808. The first characterization of airborne cyanobacteria and microalgae in the Adriatic Sea region. 2020. Wiśniewska. Kinga A.. Śliwińska-Wilczewska. Sylwia. Lewandowska. Anita U.. PLOS ONE. 15. 9. e0238808. 32913356. 7482968. 2020PLoSO..1538808W. free. Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  69. 10.1016/j.ocecoaman.2009.04.006. Approaches to monitoring, control and management of harmful algal blooms (HABs). 2009. Anderson. Donald M.. Ocean & Coastal Management. 52. 7. 342–347. 20161650. 2818325. 2009OCM....52..342A .
  70. 10.3390/toxins7041048. free. Cyanobacteria and Algae Blooms: Review of Health and Environmental Data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007–2011. 2015. Backer. Lorraine. Manassaram-Baptiste. Deana. Leprell. Rebecca. Bolton. Birgit. Toxins. 7. 4. 1048–1064. 25826054. 4417954.
  71. 10.1038/s41579-018-0040-1. Cyanobacterial blooms. 2018. Huisman. Jef. Codd. Geoffrey A.. Paerl. Hans W.. Ibelings. Bas W.. Verspagen. Jolanda M. H.. Visser. Petra M.. Nature Reviews Microbiology. 16. 8. 471–483. 29946124. 49427202.
  72. 10.3390/toxins10020076. free. Mitigating Toxic Planktonic Cyanobacterial Blooms in Aquatic Ecosystems Facing Increasing Anthropogenic and Climatic Pressures. 2018. Paerl. Hans. Toxins. 10. 2. 76. 29419777. 5848177.
  73. 10.1016/j.hal.2011.12.005. Microcystin producing cyanobacterial communities in Amvrakikos Gulf (Mediterranean Sea, NW Greece) and toxin accumulation in mussels (Mytilus galloprovincialis). 2012. Vareli. Katerina. Zarali. Ekaterini. Zacharioudakis. Georgios S.A.. Vagenas. Georgios. Varelis. Vasileios. Pilidis. George. Briasoulis. Evangelos. Sainis. Ioannis. Harmful Algae. 15. 109–118.
  74. 10.1038/ncomms14668. Bioaerosol generation by raindrops on soil. 2017. Joung. Young Soo. Ge. Zhifei. Buie. Cullen R.. Nature Communications. 8. 14668. 28267145. 5344306. 2017NatCo...814668J.
  75. 10.5194/acp-17-14919-2017. Measurements and modeling of surface–atmosphere exchange of microorganisms in Mediterranean grassland. 2017. Carotenuto. Federico. Georgiadis. Teodoro. Gioli. Beniamino. Leyronas. Christel. Morris. Cindy E.. Nardino. Marianna. Wohlfahrt. Georg. Miglietta. Franco. Atmospheric Chemistry and Physics. 17. 24. 14919–14936. 2017ACP....1714919C. free.
  76. 10.1111/j.1574-6968.2003.tb11513.x. Microorganisms cultured from stratospheric air samples obtained at 41 km. 2003. Wainwright. M.. Wickramasinghe. N.C. Narlikar. J.V. Rajaratnam. P.. FEMS Microbiology Letters. 218. 1. 161–165. 12583913. free.
  77. 10.3389/fmicb.2018.01752. free. Airborne Bacteria in Earth's Lower Stratosphere Resemble Taxa Detected in the Troposphere: Results from a New NASA Aircraft Bioaerosol Collector (ABC). 2018. Smith. David J.. Ravichandar. Jayamary Divya. Jain. Sunit. Griffin. Dale W.. Yu. Hongbin. Tan. Qian. Thissen. James. Lusby. Terry. Nicoll. Patrick. Shedler. Sarah. Martinez. Paul. Osorio. Alejandro. Lechniak. Jason. Choi. Samuel. Sabino. Kayleen. Iverson. Kathryn. Chan. Luisa. Jaing. Crystal. McGrath. John. Frontiers in Microbiology. 9. 1752. 30154759. 6102410.
  78. 10.1007/s00248-012-0088-9. Free Tropospheric Transport of Microorganisms from Asia to North America. 2012. Smith. David J.. Jaffe. Daniel A.. Birmele. Michele N.. Griffin. Dale W.. Schuerger. Andrew C.. Hee. Jonathan. Roberts. Michael S.. Microbial Ecology. 64. 4. 973–985. 22760734. 17601337.
  79. 10.1128/AEM.03029-12. Intercontinental Dispersal of Bacteria and Archaea by Transpacific Winds. 2013. Smith. David J.. Timonen. Hilkka J.. Jaffe. Daniel A.. Griffin. Dale W.. Birmele. Michele N.. Perry. Kevin D.. Ward. Peter D.. Roberts. Michael S.. Applied and Environmental Microbiology. 79. 4. 1134–1139. 23220959. 3568602. 2013ApEnM..79.1134S.
  80. 10.1073/pnas.1420815112. Continental-scale distributions of dust-associated bacteria and fungi. 2015. Barberán. Albert. Ladau. Joshua. Leff. Jonathan W.. Pollard. Katherine S.. Menninger. Holly L.. Dunn. Robert R.. Fierer. Noah. Proceedings of the National Academy of Sciences. 112. 18. 5756–5761. 25902536. 4426398. 2015PNAS..112.5756B. free.
  81. 10.5194/acp-9-9263-2009. Bacteria in the global atmosphere – Part 1: Review and synthesis of literature data for different ecosystems. 2009. Burrows. S. M.. Elbert. W.. Mark G. Lawrence. Lawrence. M. G.. Pöschl. U.. Atmospheric Chemistry and Physics. 9. 23. 9263–9280. 2009ACP.....9.9263B. free.
  82. 10.5194/acp-14-1485-2014. Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties. 2014. Deguillaume. L.. Charbouillot. T.. Joly. M.. Vaïtilingom. M.. Parazols. M.. Marinoni. A.. Amato. P.. Delort. A.-M.. Vinatier. V.. Flossmann. A.. Chaumerliac. N.. Pichon. J. M.. Houdier. S.. Laj. P.. Sellegri. K.. Colomb. A.. Brigante. M.. Mailhot. G.. Atmospheric Chemistry and Physics. 14. 3. 1485–1506. 2014ACP....14.1485D. free.
  83. 10.1016/0021-8707(66)90039-6. Sensitivity of skin and bronchial mucosa to green algae. 1966. Bernstein. I.Leonard. Safferman. Robert S.. Journal of Allergy. 38. 3. 166–173. 5223702.
  84. 10.5194/acp-12-9817-2012. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. 2012. Hoose. C.. Möhler. O.. Atmospheric Chemistry and Physics. 12. 20. 9817–9854. 2012ACP....12.9817H. free.
  85. 10.3389/fmicb.2018.02681. free. Ice Nucleation Activity and Aeolian Dispersal Success in Airborne and Aquatic Microalgae. 2018. Tesson. Sylvie V. M.. Šantl-Temkiv. Tina. Frontiers in Microbiology. 9. 2681. 30483227. 6240693.
  86. 10.1016/j.ecoenv.2006.08.006. Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. 2008. Sharma. Naveen Kumar. Rai. Ashwani K.. Ecotoxicology and Environmental Safety. 69. 1. 158–162. 17011621.
  87. 10.1016/j.marpolbul.2017.07.064. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. 2017. Lewandowska. Anita Urszula. Śliwińska-Wilczewska. Sylwia. Woźniczka. Dominika. Marine Pollution Bulletin. 125. 1–2. 30–38. 28823424. 2017MarPB.125...30L .
  88. 10.3389/fmicb.2019.00243. Methods to Investigate the Global Atmospheric Microbiome. 2019. Dommergue. Aurelien. Amato. Pierre. Tignat-Perrier. Romie. Magand. Olivier. Thollot. Alban. Joly. Muriel. Bouvier. Laetitia. Sellegri. Karine. Vogel. Timothy. Sonke. Jeroen E.. Jaffrezo. Jean-Luc. Andrade. Marcos. Moreno. Isabel. Labuschagne. Casper. Martin. Lynwill. Zhang. Qianggong. Larose. Catherine. Frontiers in Microbiology. 10. 243. 30967843. 6394204. free. Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  89. 10.1111/j.1529-8817.2007.00373.x. Airborne Algae: Their Present Status and Relevance1. 2007. Sharma. Naveen Kumar. Rai. Ashwani Kumar. Singh. Surendra. Brown. Richard Malcolm. Journal of Phycology. 43. 4. 615–627. 85314169.
  90. Schlichting HE Jr. (1964) "Meteorological conditions affecting the dispersal of airborne algae and Protozoa". Lloydia, 27: 64–78.
  91. 10.1080/09670260110001735538. A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. 2001. Tormo. R.. Recio. D.. Silva. I.. Muñoz. A.F.. European Journal of Phycology. 36. 4. 385–390. 85653057.
  92. 10.2741/e285. Airborne Algae and Cyanobacteria Occurrence and Related Health Effects. 2011. Moustaka-Gouni. Maria. Kormas. K. A.. Moustaka-Gouni. M.. Frontiers in Bioscience. 3. 2. 772–787. 21196350. free.
  93. 10.1007/BF01084602. Meteorological effects on variation of airborne algae in Mexico. 1989. Rosas. Irma. Roy-Ocotla. Guadalupe. Mosiño . Pedro. International Journal of Biometeorology. 33. 3. 173–179. 1989IJBm...33..173R. 84781386.
  94. 10.1016/j.envres.2006.04.003. Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. 2006. Sharma. Naveen Kumar. Singh. Surendra. Rai. Ashwani K.. Environmental Research. 102. 3. 252–259. 16780831. 2006ER....102..252S.
  95. 10.1016/0169-8095(95)00017-8. The size distribution of primary biological aerosol particles with radii > 0.2 μm in an urban/Rural influenced region. 1995. Matthias-Maser. S.. Jaenicke. R.. Atmospheric Research. 39. 4. 279–286. 1995AtmRe..39..279M.
  96. 10.1029/2003JD004049. Composition and diurnal variability of the natural Amazonian aerosol. 2003. Graham. Bim. Guyon. Pascal. Maenhaut. Willy. Taylor. Philip E.. Ebert. Martin. Matthias-Maser. Sabine. Mayol-Bracero. Olga L.. Godoi. Ricardo H. M.. Artaxo. Paulo. Meixner. Franz X.. Moura. Marcos A. Lima. Rocha. Carlos H. Eça D'Almeida . Grieken. Rene Van. Glovsky. M. Michael. Flagan. Richard C.. Andreae. Meinrat O.. Journal of Geophysical Research: Atmospheres. 108. D24. n/a. 2003JGRD..108.4765G. free.
  97. 10.1126/science.1106335 . Abundance of Cellular Material and Proteins in the Atmosphere. 2005. Jaenicke. R.. Science. 308. 5718. 73. 15802596. 725976.
  98. 10.5194/acp-12-11997-2012. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. 2012. Huffman. J. A.. Sinha. B.. Garland. R. M.. Snee-Pollmann. A.. Gunthe. S. S.. Artaxo. P.. Martin. S. T.. Andreae. M. O.. Pöschl. U.. Atmospheric Chemistry and Physics. 12. 24. 11997–12019. 2012ACP....1211997H. free.
  99. 10.1016/j.meegid.2006.05.002. Surprising niche for the plant pathogen Pseudomonas syringae. 2007. Morris. Cindy E.. Kinkel. Linda L.. Xiao. Kun. Prior. Philippe. Sands. David C.. Infection, Genetics and Evolution. 7. 1. 84–92. 16807133.
  100. Galán Soldevilla C., Cariñanos González P., Alcázar Teno P., Domínguez Vilches E. (2007). "Management and Quality Manual". Spanish Aerobiology Network (REA), Cordoba: Servicio de Publicaciones.
  101. 10.1038/ismej.2014.55. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall. 2014. Monteil. Caroline L.. Bardin. Marc. Morris. Cindy E.. The ISME Journal. 8. 11. 2290–2304. 24722630. 4992071.
  102. 10.1038/s41467-017-00110-9. Long-range transport of airborne microbes over the global tropical and subtropical ocean. 2017. Mayol. Eva. Arrieta. Jesús M.. Jiménez. Maria A.. Martínez-Asensio. Adrián. Garcias-Bonet. Neus. Dachs. Jordi. González-Gaya. Belén. Royer. Sarah-J.. Benítez-Barrios. Verónica M.. Fraile-Nuez. Eugenio. Duarte. Carlos M.. Nature Communications. 8. 1. 201. 28779070. 5544686. 2017NatCo...8..201M.
  103. 10.1038/s41467-018-04409-z. Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. 2018. Michaud. Jennifer M.. Thompson. Luke R.. Kaul. Drishti. Espinoza. Josh L.. Richter. R. Alexander. Xu. Zhenjiang Zech. Lee. Christopher. Pham. Kevin M.. Beall. Charlotte M.. Malfatti. Francesca. Azam. Farooq. Knight. Rob. Burkart. Michael D.. Dupont. Christopher L.. Prather. Kimberly A.. Nature Communications. 9. 1. 2017. 29789621. 5964107. 2018NatCo...9.2017M. 43969729.
  104. 10.5194/acp-12-8645-2012. Bacteria in the ECHAM5-HAM global climate model. 2012. Sesartic. A.. Lohmann. U.. Storelvmo. T.. Atmospheric Chemistry and Physics. 12. 18. 8645–8661. 2012ACP....12.8645S . 20.500.11850/44091. free . free .
  105. 10.3390/atmos8110229. free. Atmospheric Processing and Variability of Biological Ice Nucleating Particles in Precipitation at Opme, France. 2017. Pouzet. Glwadys. Peghaire. Elodie. Aguès. Maxime. Baray. Jean-Luc. Conen. Franz. Amato. Pierre. Atmosphere. 8. 12. 229. 2017Atmos...8..229P.
  106. 10.1111/gcb.12447. Bioprecipitation: A feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere . 2014. Morris. Cindy E.. Conen. Franz. Alex Huffman. J.. Phillips. Vaughan. Pöschl. Ulrich. Sands. David C.. Global Change Biology. 20. 2. 341–351. 24399753. 2014GCBio..20..341M . 10572570 .
  107. 10.1073/pnas.1205743110. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. 2013. Vaitilingom. M.. Deguillaume. L.. Vinatier. V.. Sancelme. M.. Amato. P.. Chaumerliac . N.. Delort. A.-M.. Proceedings of the National Academy of Sciences. 110. 2. 559–564. 23263871. 3545818. 2013PNAS..110..559V. free.
  108. 10.1016/j.gloenvcha.2009.09.005 . The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: A review of current systems and practices. 2010. Hughes. Kevin A.. Convey. Pete. Global Environmental Change. 20. 96–112.
  109. 10.1073/pnas.1711842115. The biomass distribution on Earth. 2018. Bar-On. Yinon M.. Phillips. Rob. Milo. Ron. Proceedings of the National Academy of Sciences. 115. 25. 6506–6511. 29784790. 6016768. 2018PNAS..115.6506B . free.
  110. 10.3389/fmicb.2018.02257. free. Assessing the Aerial Interconnectivity of Distant Reservoirs of Sclerotinia sclerotiorum. 2018. Leyronas. Christel. Morris. Cindy E.. Choufany. Maria. Soubeyrand. Samuel. Frontiers in Microbiology. 9. 2257. 30337908. 6178138.
  111. 10.5194/acp-9-9281-2009. Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems. 2009. Burrows. S. M.. Butler. T.. Jöckel. P.. Tost. H.. Kerkweg. A.. Pöschl. U.. Lawrence. M. G.. Atmospheric Chemistry and Physics . 9. 23. 9281–9297. 2009ACP.....9.9281B. free.
  112. 10.1021/es402970s. Seasonal Variability in Bacterial and Fungal Diversity of the Near-Surface Atmosphere. 2013. Bowers. Robert M.. Clements. Nicholas. Emerson. Joanne B.. Wiedinmyer. Christine. Hannigan. Michael P.. Fierer. Noah. Environmental Science & Technology. 47. 21. 12097–12106. 24083487. 2013EnST...4712097B.
  113. 10.1093/femsec/fiy031. Aeolian dispersal of bacteria in southwest Greenland: Their sources, abundance, diversity and physiological states. 2018. Šantl-Temkiv. Tina . Gosewinkel. Ulrich. Starnawski. Piotr. Lever. Mark. Finster. Kai. FEMS Microbiology Ecology . 94. 4. 29481623. free. 20.500.11850/266148. free.
  114. 10.1126/science.143.3606.583. Airborne Algae: Their Abundance and Heterogeneity. 1964. Brown. R. M.. Larson. D. A.. Bold. H. C.. Science. 143. 3606. 583–585. 17815653. 1964Sci...143..583B. 44328547.
  115. 10.1128/AEM.03333-15. Airborne Microalgae: Insights, Opportunities, and Challenges. 2016. Tesson. Sylvie V. M.. Skjøth. Carsten Ambelas. Šantl-Temkiv. Tina. Löndahl. Jakob. Applied and Environmental Microbiology. 82. 7. 1978–1991. 26801574. 4807511. 2016ApEnM..82.1978T. 4790872.
  116. 10.1016/S0169-8095(98)00109-4. Abundance of airborne heterotrophic protists in ground level air of South Dakota. 1999. Rogerson. Andrew. Detwiler. Andrew. Atmospheric Research. 51. 1. 35–44. 1999AtmRe..51...35R.
  117. 10.1016/0021-8502(94)90216-X. Fungal aerosols: A review. 1994. Madelin. T.M.. Journal of Aerosol Science. 25. 8. 1405–1412. 1994JAerS..25.1405M.
  118. 10.1016/j.atmosenv.2003.12.006. New Directions: The role of bioaerosols in atmospheric chemistry and physics. 2004. Ariya. Parisa A.. Amyot. Marc. Atmospheric Environment. 38. 8. 1231–1232. 2004AtmEn..38.1231A.
  119. Book: Bioaerosols Handbook. 9781000115048. Cox. Christopher S.. Wathes. Christopher M.. 25 November 2020. CRC Press .
  120. 10.1016/0021-8502(95)97180-M. Seasonal variation of primary biological aerosol particles. 1995. Matthias-Maser. Sabine. Peters. Kristina. Jaenicke. Ruprecht. Journal of Aerosol Science. 26. S545–S546. 1995JAerS..26S.545M.
  121. 10.1098/rstb.2010.0283. Biodiversity and biogeography of the atmosphere. 2010. Womack. Ann M.. Bohannan. Brendan J. M.. Green. Jessica L.. Philosophical Transactions of the Royal Society B: Biological Sciences. 365. 1558. 3645–3653. 20980313. 2982008.
  122. Book: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 9781118591970. Hinds. William C.. 6 December 2012. John Wiley & Sons .
  123. 10.1002/anie.200501122. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. 2005. Pöschl. Ulrich. Angewandte Chemie International Edition. 44. 46. 7520–7540. 16302183.
  124. 10.1016/j.atmosres.2016.07.018. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. 2016. Fröhlich-Nowoisky. Janine. Kampf. Christopher J.. Weber. Bettina. Huffman. J. Alex. Pöhlker. Christopher. Andreae. Meinrat O.. Lang-Yona. Naama. Burrows. Susannah M.. Gunthe. Sachin S.. Elbert. Wolfgang. Su. Hang. Hoor. Peter. Thines. Eckhard. Hoffmann. Thorsten. Després. Viviane R.. Pöschl. Ulrich. Atmospheric Research. 182. 346–376. 2016AtmRe.182..346F. free. Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  125. 10.5194/bg-8-301-2011. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques. 2011. Urbano. R.. Palenik. B.. Gaston. C. J.. Prather. K. A.. Biogeosciences. 8. 2. 301–309. 2011BGeo....8..301U. free.
  126. 10.3402/tellusb.v64i0.15598. Primary biological aerosol particles in the atmosphere: A review. 2012. Després. Vivianer.. Huffman. J.Alex. Burrows. Susannah M.. Hoose. Corinna. Safatov. Aleksandrs.. Buryak. Galina. Fröhlich-Nowoisky. Janine. Elbert. Wolfgang. Andreae. Meinrato.. Pöschl. Ulrich. Jaenicke. Ruprecht. Tellus B: Chemical and Physical Meteorology. 64. 15598. 2012TellB..6415598D. 98741728. free.
  127. 10.1007/s10453-014-9349-z. Airborne algae: Overview of the current status and its implications on the environment. 2015. Sahu. Nivedita. Tangutur. Anjana Devi. Aerobiologia. 31. 89–97. 83855537.
  128. 10.1016/j.envint.2019.104964. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment – Review study. 2019. Wiśniewska. K.. Lewandowska. A.U.. Śliwińska-Wilczewska. S.. Environment International. 131. 104964. 31351382. free.
  129. Ehrenberg C.G. (1830) "Neue Beobachtungen über blutartige Erscheinungen in Aegypten, Arabien und Sibirien, nebst einer Übersicht und Kritik der früher bekannten". Ann. Phys. Chem., 94: 477–514.
  130. Pasteur L. (1860) "Expériences relatives aux generations dites spontanées". C. R. Hebd. Seances Acad. Sci., 50: 303–307
  131. Pasteur L. (1860) "Suite à une précédente communication relative aux generations dites spontanées". C. R. Hebd. Seances Acad. Sci., 51: 675–678.
  132. 10.1126/science.1072678. Aerial Dispersal of Pathogens on the Global and Continental Scales and Its Impact on Plant Disease. 2002. Brown. J. K. M.. Hovmøller. M. S.. Science. 297. 5581. 537–541. 12142520. 2002Sci...297..537B. 4207803.
  133. 10.5194/acp-7-4569-2007. Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. 2007. Elbert. W.. Taylor. P. E.. Andreae. M. O.. Pöschl. U.. Atmospheric Chemistry and Physics. 7. 17. 4569–4588. 2007ACP.....7.4569E. 17512396 . free.
  134. 10.1016/S0007-1536(45)80041-4. The dispersion of air-borne spores. 1945. Gregory. P.H.. Transactions of the British Mycological Society. 28. 1–2. 26–72.
  135. 10.1023/A:1011868218901 . African desert dust in the Caribbean atmosphere: Microbiology and public health. 2001. Griffin. Dale W.. Garrison. Virginia H.. Herman. Jay R.. Shinn. Eugene A.. Aerobiologia. 17. 3. 203–213. 82040406. 11603/28524. free.
  136. 10.1029/2011GL048166. Atmospheric bioaerosols transported via dust storms in the western United States. 2011. Hallar. A. Gannet. Chirokova. Galina. McCubbin. Ian. Painter. Thomas H.. Wiedinmyer. Christine. Dodson. Craig. Geophysical Research Letters. 38. 17. n/a. 2011GeoRL..3817801H. 54218062 .
  137. 10.1099/00221287-48-3-357. Long-distance Spore Transport: Vertical Sections of Spore Clouds over the Sea. 1967. Hirst. J. M.. Stedman. O. J.. Hurst. G. W.. Journal of General Microbiology. 48. 3. 357–377. 6052629. free.
  138. 10.1016/j.atmosenv.2013.03.029. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan. 2013. Maki. Teruya. Kakikawa. Makiko. Kobayashi. Fumihisa. Yamada. Maromu. Matsuki. Atsushi. Hasegawa. Hiroshi. Iwasaka. Yasunobu. Atmospheric Environment. 74. 73–82. 2013AtmEn..74...73M. 2297/34677. free.
  139. 10.1289/ehp.10684. Particle Size Distribution of Airborne Microorganisms and Pathogens during an Intense African Dust Event in the Eastern Mediterranean. 2008. Polymenakou. Paraskevi N.. Mandalakis. Manolis. Stephanou. Euripides G.. Tselepides. Anastasios. Environmental Health Perspectives. 116. 3. 292–296. 18335093. 2265054.
  140. 10.1099/ijs.0.64029-0. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. And Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. 2006. Shivaji. S.. Chaturvedi. P.. Suresh. K.. Reddy. G. S. N.. Dutt. C. B. S.. Wainwright. M.. Narlikar. J. V.. Bhargava. P. M.. International Journal of Systematic and Evolutionary Microbiology. 56. 7. 1465–1473. 16825614. free.
  141. 10.1111/oik.03801. Dispersal: A central and independent trait in life history. 2017. Bonte. Dries. Dahirel. Maxime. Oikos. 126. 4. 472–479. free.
  142. Book: Freshwater Meiofauna: Biology and Ecology. 9789057821097. Rundle. Simon D.. Robertson. Anne L.. Schmid-Araya. Jenny M.. 2002. Backhuys .
  143. 10.1086/376585. Dispersal Rates Affect Species Composition in Metacommunities of Sarracenia purpurea Inquilines. 2003. Kneitel. Jamie M.. Miller. Thomas E.. The American Naturalist. 162. 2. 165–171. 12858261. 17576931.
  144. 10.1111/j.1461-0248.2005.00820.x. Integrating environmental and spatial processes in ecological community dynamics. 2005. Cottenie. Karl. Ecology Letters. 8. 11. 1175–1182. 21352441.
  145. 10.1007/s10750-014-2110-3. How do freshwater organisms cross the "dry ocean"? A review on passive dispersal and colonization processes with a special focus on temporary ponds. 2015. Incagnone. Giulia. Marrone. Federico. Barone. Rossella. Robba. Lavinia. Naselli-Flores. Luigi. Hydrobiologia. 750. 103–123. 10447/101976. 13892871. free.
  146. 10.1126/science.1070710. Global Dispersal of Free-Living Microbial Eukaryote Species. 2002. Finlay. B. J.. Science. 296. 5570. 1061–1063. 12004115. 2002Sci...296.1061F. 19508548.
  147. 10.1038/s41598-018-24747-8. The extent of wind-mediated dispersal of small metazoans, focusing nematodes. 2018. Ptatscheck. Christoph. Gansfort. Birgit. Traunspurger. Walter. Scientific Reports. 8. 1. 6814. 29717144. 5931521. 2018NatSR...8.6814P. Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  148. T.Y. Chuang and W.H. Ko. 1981. Propagule size: Its relation to population density of microorganisms in soil. Soil Biology and Biochemistry. 13(3).
  149. 10.4081/jlimnol.2004.s1.56. Role of diapause in dispersal and invasion success by aquatic invertebrates. 2004. Panov. Vadim E.. Krylov. Piotr I.. Riccardi. Nicoletta. Journal of Limnology. 63. 56. free.
  150. 10.1007/s00300-005-0061-x. Wind dispersal of soil invertebrates in the Mc Murdo Dry Valleys, Antarctica. 2006. Nkem. Johnson N.. Wall. Diana H.. Virginia. Ross A.. Barrett. John E.. Broos. Emma J.. Porazinska. Dorota L.. Adams. Byron J.. Polar Biology. 29. 4. 346–352. 32516212.
  151. 10.2307/1948560. 1948560. The Passive Dispersal of Small Aquatic Organisms and Their Colonization of Isolated Bodies of Water. Maguire. Bassett. Ecological Monographs. 1963. 33. 2. 161–185.
  152. 10.1007/s10452-014-9483-2. The meiofauna of artificial water-filled tree holes: Colonization and bottom-up effects. 2014. Ptatscheck. Chistoph. Traunspurger. Walter. Aquatic Ecology. 48. 3. 285–295. 15256569.
  153. 10.1007/s00442-002-0897-5. Blowing in the wind: A field test of overland dispersal and colonization by aquatic invertebrates. 2002. Cáceres. Carla E.. Soluk. Daniel A.. Oecologia. 131. 3. 402–408. 28547712. 2002Oecol.131..402C. 9941895.
  154. 10.1007/BF00025926. Dispersal-limited zooplankton distribution and community composition in new ponds. 1995. Jenkins. David G.. Hydrobiologia. 313-314. 15–20. 45667054.
  155. 10.1007/s10750-014-1936-z. Historical frequency of wind dispersal events and role of topography in the dispersal of anostracan cysts in a semi-arid environment. 2014. Parekh. Priya A.. Paetkau. Mark J.. Gosselin. Louis A.. Hydrobiologia. 740. 51–59. 18458173.
  156. Carroll, J.J. and Viglierchio, D.R. (1981). "On the transport of nematodes by the wind". Journal of Nematology, 13(4): 476.
  157. 10.1146/annurev.py.03.090165.000355. Factors in Survival of Nematodes. 1965. Van Gundy. Seymour D.. Annual Review of Phytopathology. 3. 43–68.
  158. 10.1093/icb/45.5.759. Anhydrobiosis in Bdelloid Species, Populations and Individuals. 2005. Ricci. C.. Caprioli. M.. Integrative and Comparative Biology. 45. 5. 759–763. 21676827. 42270008. free.
  159. 10.1111/j.2007.0030-1299.16349.x. Any way the wind blows - frequent wind dispersal drives species sorting in ephemeral aquatic communities. 2008. Vanschoenwinkel. Bram. Gielen. Saïdja. Seaman. Maitland. Brendonck. Luc. Oikos. 117. 125–134.
  160. 10.1111/j.0906-7590.2008.05442.x. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. 2008. Vanschoenwinkel. Bram. Gielen. Saïdja. Vandewaerde. Hanne. Seaman. Maitland. Brendonck. Luc. Ecography. 31. 5. 567–577.
  161. 10.1098/rspl.1886.0077. X. The distribution of micro-organisms in air. Proceedings of the Royal Society of London. 1886. 40. 242–245. 509–526. 129825037.
  162. 10.1007/s10453-019-09606-x. Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation. 2019. Els. Nora. Larose. Catherine. Baumann-Stanzer. Kathrin. Tignat-Perrier. Romie. Keuschnig. Christoph. Vogel. Timothy M.. Sattler. Birgit. Aerobiologia. 35. 4. 671–701. 201834075. free.
  163. Book: 10.1002/9781119132318.ch2c. Global-Scale Atmospheric Dispersion of Microorganisms. Microbiology of Aerosols. 2017. Griffin. D.W.. Gonzalez-Martin. C.. Hoose. C.. Smith. D.J.. 155–194. 9781119132318.
  164. 10.1029/2011EO300001. The high life: Transport of microbes in the atmosphere. 2011. Smith. David J.. Griffin. Dale W.. Jaffe. Daniel A.. Eos, Transactions American Geophysical Union. 92. 30. 249–250. 2011EOSTr..92..249S. free.
  165. 10.1016/j.atmosenv.2013.03.029. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan. 2013. Maki. Teruya. Kakikawa. Makiko. Kobayashi. Fumihisa. Yamada. Maromu. Matsuki. Atsushi. Hasegawa. Hiroshi. Iwasaka. Yasunobu. Atmospheric Environment. 74. 73–82. 2013AtmEn..74...73M. 2297/34677 . free.
  166. 10.1002/geo2.69. Beyond the planetary boundary layer: Bacterial and fungal vertical biogeography at Mount Sonnblick, Austria. 2019. Els. Nora. Baumann-Stanzer. Kathrin. Larose. Catherine. Vogel. Timothy M.. Sattler. Birgit. Geo: Geography and Environment. 6. 134665478. free.
  167. 10.1016/j.atmosenv.2017.03.018. Variability of airborne bacteria in an urban Mediterranean area (Thessaloniki, Greece). 2017. Genitsaris. Savvas. Stefanidou. Natassa. Katsiapi. Matina. Kormas. Konstantinos A.. Sommer. Ulrich. Moustaka-Gouni. Maria. Atmospheric Environment. 157. 101–110. 2017AtmEn.157..101G.
  168. 10.1007/s00253-014-6348-5. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. 2015. Gandolfi. I.. Bertolini. V.. Bestetti. G.. Ambrosini. R.. Innocente. E.. Rampazzo. G.. Papacchini. M.. Franzetti. A.. Applied Microbiology and Biotechnology. 99. 11. 4867–4877. 25592734. 10281/90570 . 16731037. free.
  169. 10.1111/j.1574-6941.2011.01053.x. Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea). 2011. Cho. Byung Cheol. Hwang. Chung Yeon. FEMS Microbiology Ecology. 76. 2. 327–341. 21255051. free.
  170. 10.1016/j.jes.2017.12.019. Effects of Asian dust events on atmospheric bacterial communities at different distances downwind of the source region. 2018. Park. Jonguk. Li. Pin-Fang. Ichijo. Tomoaki. Nasu. Masao. Yamaguchi. Nobuyasu. Journal of Environmental Sciences. 72. 133–139. 30244740. 52334609.
  171. 10.3389/fbioe.2019.00012. free. Airborne Microbial Communities at High-Altitude and Suburban Sites in Toyama, Japan Suggest a New Perspective for Bioprospecting. 2019. Tanaka. Daisuke. Sato. Kei. Goto. Motoshi. Fujiyoshi. So. Maruyama. Fumito. Takato. Shunsuke. Shimada. Takamune. Sakatoku. Akihiro. Aoki. Kazuma. Nakamura. Shogo. Frontiers in Bioengineering and Biotechnology. 7. 12. 30805335. 6370616.
  172. 10.1007/s10453-012-9250-6. High bacterial 16S rRNA gene diversity above the atmospheric boundary layer. 2012. Zweifel. Ulla Li. Hagström. Åke. Holmfeldt. Karin. Thyrhaug. Runar. Geels. Camilla. Frohn. Lise Marie. Skjøth. Carsten A.. Karlson. Ulrich Gosewinkel. Aerobiologia. 28. 4. 481–498. 84270694.
  173. 10.1073/pnas.1212089110. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. 2013. Deleon-Rodriguez. N.. Lathem. T. L.. Rodriguez-r. L. M.. Barazesh. J. M.. Anderson. B. E.. Beyersdorf. A. J.. Ziemba. L. D.. Bergin. M.. Nenes. A.. Konstantinidis. K. T.. Proceedings of the National Academy of Sciences. 110. 7. 2575–2580. 23359712. 3574924. 2013PNAS..110.2575D. free.
  174. 10.1016/j.scitotenv.2017.03.199. Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. 2017. Innocente. Elena. Squizzato. Stefania. Visin. Flavia. Facca. Chiara. Rampazzo. Giancarlo. Bertolini. Valentina. Gandolfi. Isabella. Franzetti. Andrea. Ambrosini. Roberto. Bestetti. Giuseppina. Science of the Total Environment. 593-594. 677–687. 28363180. 2017ScTEn.593..677I. 10278/3691685 . free.
  175. 10.3389/fmicb.2019.01572. 10.1101/542001. Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. 2019. Uetake. Jun. Tobo. Yutaka. Uji. Yasushi. Hill. Thomas C. J.. Demott. Paul J.. Kreidenweis. Sonia M.. Misumi. Ryohei. Frontiers in Microbiology. 10. 1572. 31379765. 6646838. 92236469. free .
  176. 10.1038/ismej.2010.167. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. 2011. Bowers. Robert M.. McLetchie. Shawna. Knight. Rob. Fierer. Noah. The ISME Journal. 5. 4. 601–612. 21048802. 3105744.
  177. 10.1016/j.atmosenv.2012.01.005. Seasonal variability in airborne bacterial communities at a high-elevation site. 2012. Bowers. Robert M.. McCubbin. Ian B.. Hallar. Anna G.. Fierer. Noah. Atmospheric Environment. 50. 41–49. 2012AtmEn..50...41B.
  178. 10.3389/fevo.2019.00043. free. Spatiotemporal Controls on the Urban Aerobiome. 2019. Mhuireach. Gwynne Á.. Betancourt-Román. Clarisse M.. Green. Jessica L.. Johnson. Bart R.. Frontiers in Ecology and Evolution. 7.
  179. 10.1073/pnas.1812826115. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. 2018. Cáliz. Joan. Triadó-Margarit. Xavier. Camarero. Lluís. Casamayor. Emilio O.. Proceedings of the National Academy of Sciences. 115. 48. 12229–12234. 30420511. 6275539. 2018PNAS..11512229C. free.
  180. 10.5194/bg-9-1125-2012. Biogeography in the air: Fungal diversity over land and oceans. 2012. Fröhlich-Nowoisky. J.. Burrows. S. M.. Xie. Z.. Engling. G.. Solomon. P. A.. Fraser. M. P.. Mayol-Bracero. O. L.. Artaxo. P.. Begerow. D.. Conrad. R.. Andreae. M. O.. Després. V. R.. Pöschl. U.. Biogeosciences. 9. 3. 1125–1136. 2012BGeo....9.1125F. free.
  181. 10.1038/s41598-019-51073-4. Global airborne microbial communities controlled by surrounding landscapes and wind conditions. 2019. Tignat-Perrier. Romie. Dommergue. Aurélien. Thollot. Alban. Keuschnig. Christoph. Magand. Olivier. Vogel. Timothy M.. Larose. Catherine. Scientific Reports. 9. 1. 14441. 31595018. 6783533. 2019NatSR...914441T. Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  182. Ontiveros . Vicente J. . Cáliz . Joan . Triadó-Margarit . Xavier . Alonso . David . Casamayor . Emilio O. . General decline in the diversity of the airborne microbiota under future climatic scenarios . Scientific Reports . Springer Science and Business Media LLC . 11 . 1 . 12 October 2021 . 20223 . 2045-2322 . 10.1038/s41598-021-99223-x. 34642388 . 8511268 . 2021NatSR..1120223O . Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  183. 10.1080/01442350802597438. Physical and chemical characterization of bioaerosols – Implications for nucleation processes. 2009. Ariya. P. A.. Sun. J.. Eltouny. N. A.. Hudson. E. D.. Hayes. C. T.. Kos. G.. International Reviews in Physical Chemistry. 28. 1. 1–32. 2009IRPC...28....1A. 95932745.
  184. 10.1890/01-0619. Spread of Plant Disease on a Continental Scale: Role of Aerial Dispersal of Pathogens. 2003. Aylor. Donald E.. Ecology. 84. 8. 1989–1997.
  185. 10.1016/j.atmosres.2010.07.004. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes. 2010. Delort. Anne-Marie. Vaïtilingom. Mickael. Amato. Pierre. Sancelme. Martine. Parazols. Marius. Mailhot. Gilles. Laj. Paolo. Deguillaume. Laurent. Atmospheric Research. 98. 2–4. 249–260. 2010AtmRe..98..249D.
  186. 10.1128/CMR.00039-06. Atmospheric Movement of Microorganisms in Clouds of Desert Dust and Implications for Human Health. 2007. Griffin. Dale W.. Clinical Microbiology Reviews. 20. 3. 459–477. 17630335. 1932751.
  187. 10.1029/2002GL015637. Microbiological degradation of atmospheric organic compounds. 2002. Ariya. Parisa A.. Nepotchatykh. Oleg. Ignatova. Olga. Amyot. Marc. Geophysical Research Letters. 29. 22. 2077. 2002GeoRL..29.2077A. 129578943 . free.
  188. 10.1029/2006JD008002. Processing of atmospheric nitrogen by clouds above a forest environment. 2007. Hill. Kimberly A.. Shepson. Paul B.. Galbavy. Edward S.. Anastasio. Cort. Kourtev. Peter S.. Konopka. Allan. Stirm. Brian H.. Journal of Geophysical Research. 112. D11. 2007JGRD..11211301H.
  189. 10.1128/AEM.01127-09. Contribution of Microbial Activity to Carbon Chemistry in Clouds. 2010. VaïTilingom. Mickaël. Amato. Pierre. Sancelme. Martine. Laj. Paolo. Leriche. Maud. Delort. Anne-Marie. Applied and Environmental Microbiology. 76. 1. 23–29. 19854931. 2798665. 2010ApEnM..76...23V.
  190. 10.1073/pnas.1205743110. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. 2013. Vaitilingom. M.. Deguillaume. L.. Vinatier. V.. Sancelme. M.. Amato. P.. Chaumerliac. N.. Delort. A.-M.. Proceedings of the National Academy of Sciences. 110. 2. 559–564. 23263871. 3545818. 2013PNAS..110..559V. free.
  191. 10.1111/j.1574-6968.2010.02000.x. Strategies for culture of 'unculturable' bacteria. 2010. Vartoukian. Sonia R.. Palmer. Richard M.. Wade. William G.. FEMS Microbiology Letters. 309. 1. 1–7. 20487025. free.
  192. 10.1038/s41598-019-50194-0. Functional metagenomic analysis of dust-associated microbiomes above the Red Sea. 2019. Aalismail. Nojood A.. Ngugi. David K.. Díaz-Rúa. Rubén. Alam. Intikhab. Cusack. Michael. Duarte. Carlos M.. Scientific Reports. 9. 1. 13741. 31551441. 6760216. 2019NatSR...913741A.
  193. 10.1038/s41598-019-41032-4. Metatranscriptomic exploration of microbial functioning in clouds. 2019. Amato. Pierre. Besaury. Ludovic. Joly. Muriel. Penaud. Benjamin. Deguillaume. Laurent. Delort. Anne-Marie. Scientific Reports. 9. 1. 4383. 30867542. 6416334. 2019NatSR...9.4383A.
  194. 10.1021/es4048472. Inhalable Microorganisms in Beijing's PM2.5 and PM10 Pollutants during a Severe Smog Event. 2014. Cao. Chen. Jiang. Wenjun. Wang. Buying. Fang. Jianhuo. Lang. Jidong. Tian. Geng. Jiang. Jingkun. Zhu. Ting F.. Environmental Science & Technology. 48. 3. 1499–1507. 24456276. 3963435. 2014EnST...48.1499C.
  195. 10.1371/journal.pone.0081862. free. A Metagenomic Framework for the Study of Airborne Microbial Communities. 2013. Yooseph. Shibu. Andrews-Pfannkoch. Cynthia. Tenney. Aaron. McQuaid. Jeff. Williamson. Shannon. Thiagarajan. Mathangi. Brami. Daniel. Zeigler-Allen. Lisa. Hoffman. Jeff. Goll. Johannes B.. Fadrosh. Douglas. Glass. John. Adams. Mark D.. Friedman. Robert. Venter. J. Craig. PLOS ONE. 8. 12. e81862. 24349140. 3859506. 2013PLoSO...881862Y.
  196. 10.1038/ismej.2011.61. Metagenomic mining for microbiologists. 2011. Delmont. Tom O.. Malandain. Cedric. Prestat. Emmanuel. Larose. Catherine. Monier. Jean-Michel. Simonet. Pascal. Vogel. Timothy M.. The ISME Journal. 5. 12. 1837–1843. 21593798. 3223302.
  197. 10.1038/s41598-019-42260-4. Comparative metagenomics study reveals pollution induced changes of microbial genes in mangrove sediments. 2019. Li. Yingdong. Zheng. Liping. Zhang. Yue. Liu. Hongbin. Jing. Hongmei. Scientific Reports. 9. 1. 5739. 30952929. 6450915. 2019NatSR...9.5739L.
  198. 10.1126/science.1107851. Comparative Metagenomics of Microbial Communities. 2005. Tringe. Susannah Green. von Mering. Christian. Kobayashi. Arthur. Salamov. Asaf A.. Chen. Kevin. Chang. Hwai W.. Podar. Mircea. Short. Jay M.. Mathur. Eric J.. Detter. John C.. Bork. Peer. Hugenholtz. Philip. Rubin. Edward M.. Science. 308. 5721. 554–557. 15845853. 2005Sci...308..554T. 161283.
  199. 10.1038/ismej.2010.144. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. 2011. Xie. Wei. Wang. Fengping. Guo. Lei. Chen. Zeling. Sievert. Stefan M.. Meng. Jun. Huang. Guangrui. Li. Yuxin. Yan. Qingyu. Wu. Shan. Wang. Xin. Chen. Shangwu. He. Guangyuan. Xiao. Xiang. Xu. Anlong. The ISME Journal. 5. 3. 414–426. 20927138. 3105715.
  200. 10.1111/j.1574-6976.2000.tb00567.x. Life at the oxic–anoxic interface: Microbial activities and adaptations. 2000. Brune. Andreas. Frenzel. Peter. Cypionka. Heribert. FEMS Microbiology Reviews. 24. 5. 691–710. 11077159. 8638694 .
  201. 10.1038/nrmicro2750. New insights into bacterial adaptation through in vivo and in silico experimental evolution. 2012. Hindré. Thomas. Knibbe. Carole. Beslon. Guillaume. Schneider. Dominique. Nature Reviews Microbiology. 10. 5. 352–365. 22450379. 22286095.
  202. 10.1016/j.tree.2016.03.013. Adaptation to Global Change: A Transposable Element–Epigenetics Perspective. 2016. Rey. Olivier. Danchin. Etienne. Mirouze. Marie. Loot. Céline. Blanchet. Simon. Trends in Ecology & Evolution. 31. 7. 514–526. 27080578.
  203. 10.5194/bg-17-6081-2020. Microbial functional signature in the atmospheric boundary layer. 2020. Tignat-Perrier. Romie. Dommergue. Aurélien. Thollot. Alban. Magand. Olivier. Vogel. Timothy M.. Larose. Catherine. Biogeosciences. 17. 23. 6081–6095. 2020BGeo...17.6081T. 234687848. free. Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  204. 10.1016/j.atmosenv.2015.07.009. Survival of microbial isolates from clouds toward simulated atmospheric stress factors. 2015. Joly. Muriel. Amato. Pierre. Sancelme. Martine. Vinatier. Virginie. Abrantes. Magali. Deguillaume. Laurent. Delort. Anne-Marie. Atmospheric Environment. 117. 92–98. 2015AtmEn.117...92J.
  205. 10.1007/s00294-017-0694-7. Sporulation: How to survive on planet Earth (And beyond). 2017. Huang. Mingwei. Hull. Christina M.. Current Genetics. 63. 5. 831–838. 28421279. 5647196.
  206. 10.1038/nrmicro2795. Beyond biogeographic patterns: Processes shaping the microbial landscape. 2012. Hanson. China A.. Fuhrman. Jed A.. Horner-Devine. M. Claire. Martiny. Jennifer B. H.. Nature Reviews Microbiology. 10. 7. 497–506. 22580365. 19575573.
  207. 10.1016/j.scitotenv.2014.04.030. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. 2014. Barberán. Albert. Henley. Jessica. Fierer. Noah. Casamayor. Emilio O.. Science of the Total Environment. 487. 187–195. 24784743. 2014ScTEn.487..187B.
  208. 10.5194/acp-14-9051-2014. The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates. 2014. Spracklen. D. V.. Heald. C. L.. Atmospheric Chemistry and Physics. 14. 17. 9051–9059. 2014ACP....14.9051S. 3290942 . free.
  209. 10.1038/ismej.2012.152. Microbial hitchhikers on intercontinental dust: Catching a lift in Chad. 2013. Favet. Jocelyne. Lapanje. Ales. Giongo. Adriana. Kennedy. Suzanne. Aung. Yin-Yin. Cattaneo. Arlette. Davis-Richardson. Austin G.. Brown. Christopher T.. Kort. Renate. Brumsack. Hans-Jürgen. Schnetger. Bernhard. Chappell. Adrian. Kroijenga. Jaap. Beck. Andreas. Schwibbert. Karin. Mohamed. Ahmed H.. Kirchner. Timothy. De Quadros. Patricia Dorr. Triplett. Eric W.. Broughton. William J.. Gorbushina. Anna A.. The ISME Journal. 7. 4. 850–867. 23254516. 3603401.
  210. 10.1038/s41467-018-04409-z. Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. 2018. Michaud. Jennifer M.. Thompson. Luke R.. Kaul. Drishti. Espinoza. Josh L.. Richter. R. Alexander. Xu. Zhenjiang Zech. Lee. Christopher. Pham. Kevin M.. Beall. Charlotte M.. Malfatti. Francesca. Azam. Farooq. Knight. Rob. Burkart. Michael D.. Dupont. Christopher L.. Prather. Kimberly A.. Nature Communications. 9. 1. 2017. 29789621. 5964107. 2018NatCo...9.2017M.
  211. 10.1021/acs.chemrev.5b00067. Formation of Urban Fine Particulate Matter. 2015. Zhang. Renyi. Wang. Gehui. Guo. Song. Zamora. Misti L.. Ying. Qi. Lin. Yun. Wang. Weigang. Hu. Min. Wang. Yuan. Chemical Reviews. 115. 10. 3803–3855. 25942499.
  212. 10.1038/484161a. Cleaning China's air. 2012. Zhang. Qiang. He. Kebin. Huo. Hong. Nature. 484. 7393. 161–162. 22498609. 205071037.
  213. 10.1038/s41598-017-05862-4. Airborne Bacterial Communities in Three East Asian Cities of China, South Korea, and Japan. 2017. Lee. Jae Young. Park. Eun Ha. Lee. Sunghee. Ko. Gwangpyo. Honda. Yasushi. Hashizume. Masahiro. Deng. Furong. Yi. Seung-muk. Kim. Ho. Scientific Reports. 7. 1. 5545. 28717138. 5514139. 2017NatSR...7.5545L.
  214. 10.1038/ngeo2893. Cleaner urban air tomorrow?. Nature Geoscience. 2017. 10. 2. 69. 2017NatGe..10...69.. free.
  215. 10.1016/j.envint.2014.10.005. A review on the human health impact of airborne particulate matter. 2015. Kim. Ki-Hyun. Kabir. Ehsanul. Kabir. Shamin. Environment International. 74. 136–143. 25454230.
  216. Walton, H., Dajnak, D., Beevers, S., Williams, M., Watkiss, P. and Hunt, A. (2015) "Understanding the health impacts of air pollution in London". King's College London, Transport for London and the Greater London Authority, 1(1): 6–14.
  217. 10.5194/acp-15-5715-2015. Long-term (2001–2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China. 2015. Zheng. S.. Pozzer. A.. Cao. C. X.. Lelieveld. J.. Atmospheric Chemistry and Physics. 15. 10. 5715–5725. 2015ACP....15.5715Z. free.
  218. 10.1038/s41467-018-02986-7. Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in India. 2018. Conibear. Luke. Butt. Edward W.. Knote. Christoph. Arnold. Stephen R.. Spracklen. Dominick V.. Nature Communications. 9. 1. 617. 29434294. 5809377. 2018NatCo...9..617C. 205559548.
  219. 10.1038/nature13774. High secondary aerosol contribution to particulate pollution during haze events in China. 2014. Huang. Ru-Jin. Zhang. Yanlin. Bozzetti. Carlo. Ho. Kin-Fai. Cao. Jun-Ji. Han. Yongming. Daellenbach. Kaspar R.. Slowik. Jay G.. Platt. Stephen M.. Canonaco. Francesco. Zotter. Peter. Wolf. Robert. Pieber. Simone M.. Bruns. Emily A.. Crippa. Monica. Ciarelli. Giancarlo. Piazzalunga. Andrea. Schwikowski. Margit. Abbaszade. Gülcin. Schnelle-Kreis. Jürgen. Zimmermann. Ralf. An. Zhisheng. Szidat. Sönke. Baltensperger. Urs. Haddad. Imad El. Prévôt. André S. H.. Nature. 514. 7521. 218–222. 25231863. 2014Natur.514..218H. 205240719.
  220. 10.1056/NEJMoa1508749. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. 2016. Stein. Michelle M.. Hrusch. Cara L.. Gozdz. Justyna. Igartua. Catherine. Pivniouk. Vadim. Murray. Sean E.. Ledford. Julie G.. Marques Dos Santos. Mauricius. Anderson. Rebecca L.. Metwali. Nervana. Neilson. Julia W.. Maier. Raina M.. Gilbert. Jack A.. Holbreich. Mark. Thorne. Peter S.. Martinez. Fernando D.. von Mutius. Erika. Vercelli. Donata. Ober. Carole. Sperling. Anne I.. New England Journal of Medicine. 375. 5. 411–421. 27518660. 5137793.
  221. 10.1111/ina.12427. Microbial characteristics in homes of asthmatic and non-asthmatic adults in the ECRHS cohort. 2018. Valkonen. M.. Täubel. M.. Pekkanen. J.. Tischer. C.. Rintala. H.. Zock. J.-P.. Casas. L.. Probst-Hensch. N.. Forsberg. B.. Holm. M.. Janson. C.. Pin. I.. Gislason. T.. Jarvis. D.. Heinrich. J.. Hyvärinen. A.. Indoor Air. 28. 1. 16–27. 28960492. 10138/238079. 26769029. free.
  222. 10.1164/rccm.201603-0451OC. Early-Life Exposure to the Great Smog of 1952 and the Development of Asthma. 2016. Bharadwaj. Prashant. Zivin. Joshua Graff. Mullins. Jamie T.. Neidell. Matthew. American Journal of Respiratory and Critical Care Medicine. 194. 12. 1475–1482. 27392261. 5440984.
  223. 10.1021/es4048472. Inhalable Microorganisms in Beijing's PM2.5 and PM10 Pollutants during a Severe Smog Event. 2014. Cao. Chen. Jiang. Wenjun. Wang. Buying. Fang. Jianhuo. Lang. Jidong. Tian. Geng. Jiang. Jingkun. Zhu. Ting F.. Environmental Science & Technology. 48. 3. 1499–1507. 24456276. 3963435. 2014EnST...48.1499C. 14761200.
  224. 10.1038/nprot.2015.046. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities. 2015. Jiang. Wenjun. Liang. Peng. Wang. Buying. Fang. Jianhuo. Lang. Jidong. Tian. Geng. Jiang. Jingkun. Zhu. Ting F.. Nature Protocols. 10. 5. 768–779. 25906115. 7086576.
  225. 10.1186/s40168-016-0199-5. The structure and diversity of human, animal and environmental resistomes. 2016. Pal. Chandan. Bengtsson-Palme. Johan. Kristiansson. Erik. Larsson. D. G. Joakim. Microbiome. 4. 1. 54. 27717408. 5055678 . free .
  226. Book: 10.1002/9781119132318.ch1a. Main Biological Aerosols, Specificities, Abundance, and Diversity. Microbiology of Aerosols. 2017. Amato. P.. Brisebois. E.. Draghi. M.. Duchaine. C.. Fröhlich-Nowoisky. J.. Huffman. J.A.. Mainelis. G.. Robine. E.. Thibaudon. M.. 1–21. 9781119132318.
  227. 10.1073/pnas.0608255104. Urban aerosols harbor diverse and dynamic bacterial populations. 2007. Brodie. E. L.. Desantis. T. Z.. Parker. J. P. M.. Zubietta. I. X.. Piceno. Y. M.. Andersen. G. L.. Proceedings of the National Academy of Sciences. 104. 1. 299–304. 17182744. 1713168. 2007PNAS..104..299B. free.
  228. 10.1016/j.scitotenv.2017.03.105. Assessment and risk modeling of airborne enteric viruses emitted from wastewater reused for irrigation. 2017. Courault. D.. Albert. I.. Perelle. S.. Fraisse. A.. Renault. P.. Salemkour. A.. Amato. P.. Science of the Total Environment. 592. 512–526. 28320526. 2017ScTEn.592..512C.
  229. 10.1371/journal.pone.0182869. Active microorganisms thrive among extremely diverse communities in cloud water. 2017. Amato. Pierre. Joly. Muriel. Besaury. Ludovic. Oudart. Anne. Taib. Najwa. Moné. Anne I.. Deguillaume. Laurent. Delort. Anne-Marie. Debroas. Didier. PLOS ONE. 12. 8. e0182869. 28792539. 5549752. 2017PLoSO..1282869A. free.
  230. 10.1016/j.jaerosci.2004.10.012. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. 2005. Aller. Josephine Y.. Kuznetsova. Marina R.. Jahns. Christopher J.. Kemp. Paul F.. Journal of Aerosol Science. 36. 5–6. 801–812. 2005JAerS..36..801A.
  231. 10.5194/acp-9-9281-2009. Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems. 2009. Burrows. S. M.. Butler. T.. Jöckel. P.. Tost. H.. Kerkweg. A.. Pöschl. U.. Lawrence. M. G.. Atmospheric Chemistry and Physics. 9. 23. 9281–9297. 2009ACP.....9.9281B. free.
  232. 10.1029/2003JD003545. Airborne bacteria as cloud condensation nuclei. 2003. Bauer. Heidi. Giebl. Heinrich. Hitzenberger. Regina. Kasper-Giebl. Anne. Reischl. Georg. Zibuschka. Franziska. Puxbaum. Hans. Journal of Geophysical Research: Atmospheres. 108. D21. 4658. 2003JGRD..108.4658B.
  233. 10.1051/jp4:2004121004. Ice nucleation active bacteria and their potential role in precipitation. 2004. Morris. C. E.. Georgakopoulos. D. G.. Sands. D. C.. Journal de Physique IV (Proceedings). 121. 87–103.
  234. Book: 10.1002/9781119132318.ch4b. Impacts of Microbial Aerosols on Natural and Agro-ecosystems: Immigration, Invasions, and their Consequences. Microbiology of Aerosols. 2017. Morris. C.E.. Sands. D.C.. 269–279. 9781119132318.
  235. 10.1007/s10453-011-9203-5. Microbial survival in the stratosphere and implications for global dispersal. 2011. Smith. David J.. Griffin. Dale W.. McPeters. Richard D.. Ward. Peter D.. Schuerger. Andrew C.. Aerobiologia. 27. 4. 319–332. 52107037.
  236. 10.5194/acp-15-6455-2015. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber. 2015. Amato. P.. Joly. M.. Schaupp. C.. Attard. E.. Möhler. O.. Morris. C. E.. Brunet. Y.. Delort. A.-M.. Atmospheric Chemistry and Physics. 15. 11. 6455–6465. 2015ACP....15.6455A. free.
  237. 10.1029/2006JD008002. Processing of atmospheric nitrogen by clouds above a forest environment. 2007. Hill. Kimberly A.. Shepson. Paul B.. Galbavy. Edward S.. Anastasio. Cort. Kourtev. Peter S.. Konopka. Allan. Stirm. Brian H.. Journal of Geophysical Research. 112. D11. D11301. 2007JGRD..11211301H.
  238. 10.1016/j.atmosenv.2011.11.050. Bacterial abundance and viability in long-range transported dust. 2012. Hara. Kazutaka. Zhang. Daizhou. Atmospheric Environment. 47. 20–25. 2012AtmEn..47...20H.
  239. 10.1111/j.1574-6941.2012.01402.x. The microbial diversity of a storm cloud as assessed by hailstones. 2012. Temkiv. Tina Šantl. Finster. Kai. Hansen. Bjarne Munk. Nielsen. Niels Woetmann. Karlson. Ulrich Gosewinkel. FEMS Microbiology Ecology. 81. 3. 684–695. 22537388. free.
  240. 10.1016/1352-2310(96)00160-4. Fog droplets—an atmospheric source of secondary biological aerosol particles. 1997. Fuzzi. Sandro. Mandrioli. Paolo. Perfetto. Antonio. Atmospheric Environment. 31. 2. 287–290. 1997AtmEn..31..287F.
  241. 10.5194/acp-7-4159-2007. A fate for organic acids, formaldehyde and methanol in cloud water: Their biotransformation by micro-organisms. 2007. Amato. P.. Demeer. F.. Melaouhi. A.. Fontanella. S.. Martin-Biesse. A.-S.. Sancelme. M.. Laj. P.. Delort. A.-M.. Atmospheric Chemistry and Physics. 7. 15. 4159–4169. 2007ACP.....7.4159A. free.
  242. 10.1029/2000GL011684. Bacterial growth in supercooled cloud droplets. 2001. Sattler. Birgit. Puxbaum. Hans. Psenner. Roland. Geophysical Research Letters. 28. 2. 239–242. 2001GeoRL..28..239S. 129784139 . free.
  243. 10.1126/science.aav0566. Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds. 2019. Rosenfeld. Daniel. Zhu. Yannian. Wang. Minghuai. Zheng. Youtong. Goren. Tom. Yu. Shaocai. Science. 363. 6427. 30655446. 58612273. free.
  244. 10.1038/326655a0. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. 1987. Charlson. Robert J.. Lovelock. James E.. Andreae. Meinrat O.. Warren. Stephen G.. Nature. 326. 6114. 655–661. 1987Natur.326..655C. 4321239.
  245. 10.5194/acp-13-3979-2013. The physical and chemical characteristics of marine primary organic aerosol: A review. 2013. Gantt. B.. Meskhidze. N.. Atmospheric Chemistry and Physics. 13. 8. 3979–3996. 2013ACP....13.3979G. free.
  246. 10.1126/science.1131779. Phytoplankton and Cloudiness in the Southern Ocean. 2006. Meskhidze. Nicholas. Nenes. Athanasios. Science. 314. 5804. 1419–1423. 17082422. 2006Sci...314.1419M. 36030601. free.
  247. 10.1016/j.earscirev.2008.03.001. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. 2008. Andreae. M.O.. Rosenfeld. D.. Earth-Science Reviews. 89. 1–2. 13–41. 2008ESRv...89...13A.
  248. 10.5194/acp-13-4235-2013. Droplet number uncertainties associated with CCN: An assessment using observations and a global model adjoint. 2013. Moore. R. H.. Karydis. V. A.. Capps. S. L.. Lathem. T. L.. Nenes. A.. Atmospheric Chemistry and Physics. 13. 8. 4235–4251. 2013ACP....13.4235M. free.
  249. 10.1038/s41598-018-21590-9. Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei. 2018. Sanchez. Kevin J.. Chen. Chia-Li. Russell. Lynn M.. Betha. Raghu. Liu. Jun. Price. Derek J.. Massoli. Paola. Ziemba. Luke D.. Crosbie. Ewan C.. Moore. Richard H.. Müller. Markus. Schiller. Sven A.. Wisthaler. Armin. Lee. Alex K. Y.. Quinn. Patricia K.. Bates. Timothy S.. Porter. Jack. Bell. Thomas G.. Saltzman. Eric S.. Vaillancourt. Robert D.. Behrenfeld. Mike J.. Scientific Reports. 8. 1. 3235. 29459666. 5818515. 2018NatSR...8.3235S.
  250. 10.1038/s41579-019-0158-9. Bacteria and archaea on Earth and their abundance in biofilms. 2019. Flemming. Hans-Curt. Wuertz. Stefan. Nature Reviews Microbiology. 17. 4. 247–260. 30760902. 61155774.
  251. Cavicchioli, R., Ripple, W.J., Timmis, K.N., Azam, F., Bakken, L.R., Baylis, M., Behrenfeld, M.J., Boetius, A., Boyd, P.W., Classen, A.T. and Crowther, T.W. (2019) "Scientists' warning to humanity: microorganisms and climate change". Nature Reviews Microbiology, 17: 569–586.
  252. Greaves. Jane S.. Richards. Anita M. S.. Bains. William. Rimmer. Paul B.. Sagawa. Hideo. Clements. David L.. Seager. Sara. Petkowski. Janusz J.. Sousa-Silva. Clara. Ranjan. Sukrit. Drabek-Maunder. Emily. Fraser. Helen J.. Cartwright. Annabel. Mueller-Wodarg. Ingo. Zhan. Zhuchang. Friberg. Per. Coulson. Iain. Lee. E'lisa. Hoge. Jim. Phosphine gas in the cloud decks of Venus. Nature Astronomy. 2020. 5. 7. 655–664. 2397-3366. 10.1038/s41550-020-1174-4. 2009.06593. 221655755.
  253. Hallsworth. John E.. Koop. Thomas. Dallas. Tiffany D.. Zorzano. María-Paz. Burkhardt. Juergen. Golyshina. Olga V.. Martín-Torres. Javier. Dymond. Marcus K.. Ball. Philip. McKay. Christopher P.. Water activity in Venus's uninhabitable clouds and other planetary atmospheres. Nature Astronomy. 2021. 5. 7. 665–675. 2397-3366. 10.1038/s41550-021-01391-3. 2021NatAs...5..665H. 10261/261774 . 237820246.
  254. 10.1186/s13059-020-01964-x. Longitudinal survey of microbiome associated with particulate matter in a megacity. 2020. Qin. Nan. Liang. Peng. Wu. Chunyan. Wang. Guanqun. Xu. Qian. Xiong. Xiao. Wang. Tingting. Zolfo. Moreno. Segata. Nicola. Qin. Huanlong. Knight. Rob. Gilbert. Jack A.. Zhu. Ting F.. Genome Biology. 21. 1. 55. 32127018. 7055069 . free . Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  255. 10.1186/s40168-020-00875-0. Microbiome definition re-visited: Old concepts and new challenges. 2020. Berg. Gabriele. Gabriele Berg. Rybakova. Daria. Fischer. Doreen. Cernava. Tomislav. Vergès. Marie-Christine Champomier. Charles. Trevor. Chen. Xiaoyulong. Cocolin. Luca. Eversole. Kellye. Corral. Gema Herrero. Kazou. Maria. Kinkel. Linda. Lange. Lene. Lima. Nelson. Loy. Alexander. MacKlin. James A.. Maguin. Emmanuelle. Mauchline. Tim. McClure. Ryan. Mitter. Birgit. Ryan. Matthew. Sarand. Inga. Smidt. Hauke. Schelkle. Bettina. Roume. Hugo. Kiran. G. Seghal. Selvin. Joseph. Souza. Rafael Soares Correa de. Van Overbeek. Leo. Singh. Brajesh K.. Microbiome. 8. 1. 103. 32605663. 7329523. 4 . free . Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  256. 10.1016/j.copbio.2021.08.003. Calling for a systems approach in microbiome research and innovation. 2022. Meisner. Annelein. Wepner. Beatrix. Kostic. Tanja. Van Overbeek. Leo S.. Bunthof. Christine J.. De Souza. Rafael Soares Correa. Olivares. Marta. Sanz. Yolanda. Lange. Lene. Fischer. Doreen. Sessitsch. Angela. Smidt. Hauke. Current Opinion in Biotechnology. 73. 171–178. 34479027. 237409945 . 10261/251784. free. Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  257. 10.1038/s41579-019-0178-5. Climate change microbiology — problems and perspectives. 2019. Hutchins. David A.. Jansson. Janet K.. Remais. Justin V.. Rich. Virginia I.. Singh. Brajesh K.. Trivedi. Pankaj. Nature Reviews Microbiology. 17. 6. 391–396. 31092905. 155102440.
  258. 10.1038/nrmicro2439. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. 2010. Singh. Brajesh K.. Bardgett. Richard D.. Smith. Pete. Reay. Dave S.. Nature Reviews Microbiology. 8. 11. 779–790. 20948551. 1522347.
  259. 10.1038/s41579-019-0222-5. Scientists' warning to humanity: Microorganisms and climate change. 2019. Cavicchioli. Ricardo. Ripple. William J.. Timmis. Kenneth N.. Azam. Farooq. Bakken. Lars R.. Baylis. Matthew. Behrenfeld. Michael J.. Boetius. Antje. Boyd. Philip W.. Classen. Aimée T.. Crowther. Thomas W.. Danovaro. Roberto. Foreman. Christine M.. Huisman. Jef. Hutchins. David A.. Jansson. Janet K.. Karl. David M.. Koskella. Britt. Mark Welch. David B.. Martiny. Jennifer B. H.. Moran. Mary Ann. Orphan. Victoria J.. Reay. David S.. Remais. Justin V.. Rich. Virginia I.. Singh. Brajesh K.. Stein. Lisa Y.. Stewart. Frank J.. Sullivan. Matthew B.. Van Oppen. Madeleine J. H.. Nature Reviews Microbiology. 17. 9. 569–586. 31213707. 7136171. 190637591. 1.
  260. 10.1073/pnas.1907414116. Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory. 2019. Tipton. Laura. Zahn. Geoffrey. Datlof. Erin. Kivlin. Stephanie N.. Sheridan. Patrick. Amend. Anthony S.. Hynson. Nicole A.. Proceedings of the National Academy of Sciences. 116. 51. 25728–25733. 31801876. 6926071. 2019PNAS..11625728T . free.
  261. 10.1007/s10453-018-9510-1. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). 2018. Brągoszewska. Ewa. Pastuszka. Józef S.. Aerobiologia. 34. 2. 241–255. 29773927. 5945727. 21687542.
  262. 10.1016/j.envint.2020.106156. Airborne bacterial communities of outdoor environments and their associated influencing factors. 2020. Ruiz-Gil. Tay. Acuña. Jacquelinne J.. Fujiyoshi. So. Tanaka. Daisuke. Noda. Jun. Maruyama. Fumito. Jorquera. Milko A.. Environment International. 145. 106156. 33039877. 222301690. free.
  263. 10.1038/s41396-019-0555-0. Air mass source determines airborne microbial diversity at the ocean–atmosphere interface of the Great Barrier Reef marine ecosystem. 2020. Archer. Stephen D. J.. Lee. Kevin C.. Caruso. Tancredi. King-Miaow. Katie. Harvey. Mike. Huang. Danwei. Wainwright. Benjamin J.. Pointing. Stephen B.. The ISME Journal. 14. 3. 871–876. 31754205. 7031240. Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  264. Lynggaard . Christina . Bertelsen . Mads Frost . Jensen . Casper V. . Johnson . Matthew S. . Frøslev . Tobias Guldberg . Olsen . Morten Tange . Bohmann . Kristine . Airborne environmental DNA for terrestrial vertebrate community monitoring . Current Biology . 6 January 2022 . 32 . 3 . 701–707.e5 . 10.1016/j.cub.2021.12.014. 34995490 . 8837273 . 245772800 .
  265. Clare . Elizabeth L. . Economou . Chloe K. . Bennett . Frances J. . Dyer . Caitlin E. . Adams . Katherine . McRobie . Benjamin . Drinkwater . Rosie . Littlefair . Joanne E. . Measuring biodiversity from DNA in the air . Current Biology . January 2022 . 32 . 3 . 693–700.e5 . 10.1016/j.cub.2021.11.064. 34995488 . 245772825 . free .
  266. 10.7717/peerj.11030. EDNAir: Proof of concept that animal DNA can be collected from air sampling. 2021. Clare. Elizabeth L.. Economou. Chloe K.. Faulkes. Chris G.. Gilbert. James D.. Bennett. Frances. Drinkwater. Rosie. Littlefair. Joanne E.. PeerJ. 9. e11030. 33850648. 8019316 . free . Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  267. https://www.livescience.com/dna-collected-air.html Researchers can now collect and sequence DNA from the air
  268. Métris . Kimberly L. . Métris . Jérémy . 2023-04-14 . Aircraft surveys for air eDNA: probing biodiversity in the sky . PeerJ . en . 11 . e15171 . 10.7717/peerj.15171 . 37077310 . 10108859 . 2167-8359 . free .