Advanced z-transform explained

In mathematics and signal processing, the advanced z-transform is an extension of the z-transform, to incorporate ideal delays that are not multiples of the sampling time. It takes the form

F(z,m)=

infty
\sum
k=0

f(kT+m)z-k

where

[0,T].

It is also known as the modified z-transform.

The advanced z-transform is widely applied, for example to accurately model processing delays in digital control.

Properties

If the delay parameter, m, is considered fixed then all the properties of the z-transform hold for the advanced z-transform.

Linearity

l{Z}\left\{

n
\sum
k=1

ckfk(t)\right\}=

n
\sum
k=1

ckFk(z,m).

Time shift

l{Z}\left\{u(t-nT)f(t-nT)\right\}=z-nF(z,m).

Damping

l{Z}\left\{f(t)e-a\right\}=e-aF(eaz,m).

Time multiplication

l{Z}\left\{tyf(t)\right\}=\left(-Tz

d
dz

+m\right)yF(z,m).

Final value theorem

\limkf(kT+m)=\limz(1-z-1)F(z,m).

Example

Consider the following example where

f(t)=\cos(\omegat)

:

\begin{align} F(z,m)&=l{Z}\left\{\cos\left(\omega\left(kT+m\right)\right)\right\}\\ &=l{Z}\left\{\cos(\omegakT)\cos(\omegam)-\sin(\omegakT)\sin(\omegam)\right\}\\ &=\cos(\omegam)l{Z}\left\{\cos(\omegakT)\right\}-\sin(\omegam)l{Z}\left\{\sin(\omegakT)\right\}\\ &=\cos(\omegam)

z\left(z-\cos(\omegaT)\right)
z2-2z\cos(\omegaT)+1

-\sin(\omegam)

z\sin(\omegaT)
z2-2z\cos(\omegaT)+1

\\ &=

z2\cos(\omegam)-z\cos(\omega(T-m))
z2-2z\cos(\omegaT)+1

. \end{align}

If

m=0

then

F(z,m)

reduces to the transform

F(z,0)=

z2-z\cos(\omegaT)
z2-2z\cos(\omegaT)+1

,

which is clearly just the z-transform of

f(t)

.

References