In statistics, an adaptive estimator is an estimator in a parametric or semiparametric model with nuisance parameters such that the presence of these nuisance parameters does not affect efficiency of estimation.
Formally, let parameter θ in a parametric model consists of two parts: the parameter of interest, and the nuisance parameter . Thus . Then we will say that is an adaptive estimator of ν in the presence of η if this estimator is regular, and efficient for each of the submodels
l{P}\nu(η0)=\{P\theta:\nu\inN,η=η0\}.
The necessary condition for a regular parametric model to have an adaptive estimator is that
I\nuη(\theta)=\operatorname{E}[z\nuzη']=0 forall\theta,
Suppose
\scriptstylel{P}
l{P}=\{ f\theta(x)=\tfrac{1}{\sqrt{2\pi}\sigma}
| ||||||
e |
| \mu\inR,\sigma>0 \}.
\hat\mu=\bar{x}