In mathematics, specifically algebraic topology, there is a resolution analogous to free resolutions of spectra yielding a tool for constructing the Adams spectral sequence. Essentially, the idea is to take a connective spectrum of finite type
X
H*(X;Z/p)
This construction can be generalized using a spectrum
E
BP
MU
The mod
p
(Xs,gs)
X
where\begin{matrix} X\\ \downarrow\\ K \end{matrix}
K
H*(X)
whereK=
infty wedge k=1
wedge Ik \SigmakHZ/p
Ik
Hk(X)
X1
X0=X
K0=K
where the horizontal map is the fiber map. Recursively iterating through this construction yields a commutative diagram\begin{matrix} X0&\leftarrow&X1\\ \downarrow&&\\ K0 \end{matrix}
giving the collection\begin{matrix} X0&\leftarrow&X1&\leftarrow&X2&\leftarrow … \\ \downarrow&&\downarrow&&\downarrow\\ K0&&K1&&K2 \end{matrix}
(Xs,gs)
is the homotopy fiber ofXs=Hofiber(fs-1:Xs-1\toKs-1)
fs-1
gs:Xs\toXs-1
Now, we can use the Adams resolution to construct a free
l{A}p
H*(X)
X
which can be strung together to form a long exact sequence0\leftarrow
*(X H s) \leftarrow
*(K H s) \leftarrowH*(\SigmaXs+1)\leftarrow0
giving a free resolution of0\leftarrowH*(X)\leftarrow
*(K H 0) \leftarrowH*(\SigmaK1) \leftarrowH*(\Sigma2K2)\leftarrow …
H*(X)
l{A}p
Because there are technical difficulties with studying the cohomology ring
E*(E)
E*(E)
E=HFp
HFp*(HFp)=l{A}*
E*(X)
E*(E)
which contains the
Ext E*(E) (E*(S),E*(X))
E2
X
E*
where the vertical arrows\begin{matrix} X0&\xleftarrow{g0}&X1&\xleftarrow{g1}&X2&\leftarrow … \\ \downarrow&&\downarrow&&\downarrow\\ K0&&K1&&K2 \end{matrix}
fs:Xs\toKs
E*
Xs+1=Hofiber(fs)
fs
E\wedgeXs
E\wedgeKs
E*(fs)
hs:E\wedgeKs\toE\wedgeXs
hs(E\wedgefs)=
id | |
E\wedgeXs |
Ks
E\wedgeKs
Extt,u(E*(S),E*(Ks))=\piu(Ks)
t=0
0
Although this seems like a long laundry list of properties, they are very important in the construction of the spectral sequence. In addition, the retract properties affect the structure of construction of the
E*
The construction of the
E*
E
E*(E)
\pi*(E)
\mu*
\pi0
Hr(E;A)
Z\subsetA\subsetQ
extends maximally.\theta:Z\to\pi0(E)
If we set
and letKs=E\wedgeFs
be the canonical map, we can setfs:Xs\toKs
Note thatXs+1=Hofiber(fs)
E
E\wedgeE
E\wedgeXs
E\wedgeKs=E\wedgeE\wedgeXs
Ks
E\wedgeKs
which gives the desiredE*(Ks)=E*(E) ⊗
\pi*(E) E*(Xs)
Ext
It turns out the
E1
*(E | |
C | |
*(X)) |