Abraham–Minkowski controversy explained

The Abraham–Minkowski controversy is a physics debate concerning electromagnetic momentum within dielectric media.[1] [2] Two equations were first suggested by Hermann Minkowski (1908)[3] and Max Abraham (1909)[4] [5] for this momentum. They predict different values, from which the name of the controversy derives.[6] Experimental support has been claimed for both.[7] [8] [9] [10]

The two points of view have different physical interpretations and thus neither need be more correct than the other.[11] David J. Griffiths argues that, in the presence of matter, only the total stress–energy tensor carries unambiguous physical significance; how one apportions it between an "electromagnetic" part and a "matter" part depends on context and convenience.[12]

Several papers have claimed to have resolved this controversy.[13] [14] [15] [16] [17] [18]

The controversy is still of importance in physics beyond the Standard Model where electrodynamics gets modifications, like in the presence of axions.[19]

External links

Notes and References

  1. Leonhardt. Ulf. 2006. Momentum in an uncertain light. Nature. 444. 7121. 823–824. 2006Natur.444..823L. 10.1038/444823a. 17167461. 33682507. free.
  2. Web site: McDonald. K. T.. 2017. Bibliography on the Abraham–Minkowski Debate .
  3. Minkowski. H.. 1908. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 53–111. s:de:Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern.
  4. Abraham. M.. 1909. Zur Elektrodynamik bewegter Körper. Rendiconti del Circolo Matematico di Palermo. 28. 1–28. 10.1007/bf03018208. s:de:Zur Elektrodynamik bewegter Körper (Abraham). 121681939.
  5. Abraham. M.. 1910. Sull'Elletrodinamica di Minkowski. Rendiconti del Circolo Matematico di Palermo. 30. 33–46. 10.1007/bf03014862. 121524871.
  6. Nieminen. T. A. Heckenberg. N. R.. Rubinsztein-Dunlop. H.. 2007. Colloquium: Momentum of an electromagnetic wave in dielectric media. Reviews of Modern Physics. 79. 4. 1197–1216. 0710.0461. 2007RvMP...79.1197P. 10.1103/RevModPhys.79.1197. Pfeifer. R. N. C.. 10.1.1.205.8073. See also: 2009. Erratum: Colloquium: Momentum of an electromagnetic wave in dielectric media [Rev. Mod. Phys. '''79''', 1197 (2007)]. Reviews of Modern Physics. 81. 1. 443. 2009RvMP...81..443P. 10.1103/RevModPhys.81.443. 0710.0461. Pfeifer. Robert N. C.. Nieminen. Timo A.. Heckenberg. Norman R.. Rubinsztein-Dunlop. Halina.
  7. A. Ashkin . J. M. Dziedzic . Radiation Pressure on a Free Liquid Surface . Physical Review Letters . 1973 . 30 . 4 . 139–142 . 10.1103/PhysRevLett.30.139.
  8. Gretchen K. Campbell . Aaron E. Leanhardt . Jongchul Mun . Micah Boyd . Erik W. Streed . Wolfgang Ketterle . David E. Pritchard . Photon Recoil Momentum in Dispersive Media . Physical Review Letters . 2005 . 94 . 17 . 170403 . 10.1103/PhysRevLett.94.170403. 15904272 . cond-mat/0502014 . 2033128 .
  9. Weilong She . Jianhui Yu . Raohui Feng . Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light . Physical Review Letters . 2008 . 101 . 24 . 243601 . 10.1103/PhysRevLett.101.243601. 19113619 . 0806.2442 . 9630919 .
  10. Web site: Experiment resolves century-old optics mystery. Dacey. J.. 9 January 2009. Physics World. 18 April 2021.
  11. Milonni . Peter W. . Boyd . Robert W. . 2010-12-31 . Momentum of Light in a Dielectric Medium . Advances in Optics and Photonics . en . 2 . 4 . 519 . 10.1364/AOP.2.000519 . 1943-8206 . 2023-07-19.
  12. Griffiths. D. J.. 2012. Resource Letter EM-1: Electromagnetic Momentum. American Journal of Physics. 80. 1. 7–18. 10.1119/1.3641979. 2012AmJPh..80....7G. free.
  13. Gordon. J. P.. 1973. Radiation forces and momenta in dielectric media. Physical Review A. 8. 1. 14–21. 10.1103/physreva.8.14. 1973PhRvA...8...14G.
  14. Nelson. D. F.. 1991. Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski–Abraham controversy. Physical Review A. 44. 6. 3985–3996. 10.1103/physreva.44.3985. 9906414. 1991PhRvA..44.3985N.
  15. Mansuripur. M.. Resolution of the Abraham–Minkowski controversy. Optics Communications. 2010. 283. 10. 1997–2005. 1208.0872. 10.1016/j.optcom.2010.01.010. 2010OptCo.283.1997M. 118347570.
  16. Barnett. S.. 2010. Resolution of the Abraham–Minkowski Dilemma. Physical Review Letters. 104 . 7. 070401. 2010PhRvL.104g0401B. 10.1103/PhysRevLett.104.070401. 20366861.
  17. Mikko Partanen . Teppo Häyrynen . Jani Oksanen . Jukka Tulkki . Photon mass drag and the momentum of light in a medium . Physical Review A . 2017 . 95 . 6 . 063850 . 10.1103/PhysRevA.95.063850. 2017PhRvA..95f3850P . 1603.07224 . 53420774 .
  18. Mikko Partanen . Jukka Tulkki . Covariant theory of light in a dispersive medium . Physical Review A . 2021 . 104 . 2 . 023510 . 10.1103/PhysRevA.104.023510 . 2021PhRvA.104b3510P . 2105.04053 . 234336055 .
  19. Tobar . Michael E. . McAllister . Ben T. . Goryachev . Maxim . 2022-02-15 . Poynting vector controversy in axion modified electrodynamics . Physical Review D . en . 105 . 4 . 045009 . 10.1103/PhysRevD.105.045009 . 2470-0010. 2109.04056 . 246430570 .