In mathematics, Abel's summation formula, introduced by Niels Henrik Abel, is intensively used in analytic number theory and the study of special functions to compute series.
Let
(an)
infty | |
n=0 |
A
A(t)=\sum0an
t
x<y
\phi
[x,y]
\sumxan\phi(n)=A(y)\phi(y)-A(x)\phi(x)-
y | |
\int | |
x |
A(u)\phi'(u)du.
The formula is derived by applying integration by parts for a Riemann–Stieltjes integral to the functions
A
\phi
Taking the left endpoint to be
-1
\sum0an\phi(n)=A(x)\phi(x)-
x | |
\int | |
0 |
A(u)\phi'(u)du.
(an)
n=1
a0=0
\sum1an\phi(n)=A(x)\phi(x)-
x | |
\int | |
1 |
A(u)\phi'(u)du.
x\toinfty
infty | |
\begin{align} \sum | |
n=0 |
an\phi(n)&=\limxl(A(x)\phi(x)r)-
infty | |
\int | |
0 |
A(u)\phi'(u)du,
infty | |
\\ \sum | |
n=1 |
an\phi(n)&=\limxl(A(x)\phi(x)r)-
infty | |
\int | |
1 |
A(u)\phi'(u)du. \end{align}
A particularly useful case is the sequence
an=1
n\ge0
A(x)=\lfloorx+1\rfloor
\sum0\phi(n)=\lfloorx+1\rfloor\phi(x)-
x | |
\int | |
0 |
\lflooru+1\rfloor\phi'(u)du.
a0=0
an=1
n\ge1
\sum1\phi(n)=\lfloorx\rfloor\phi(x)-
x | |
\int | |
1 |
\lflooru\rfloor\phi'(u)du.
x\toinfty
infty | |
\begin{align} \sum | |
n=0 |
\phi(n)&=\limxl(\lfloorx+1\rfloor\phi(x)r)-
infty | |
\int | |
0 |
\lflooru+1\rfloor\phi'(u)du,
infty | |
\\ \sum | |
n=1 |
\phi(n)&=\limxl(\lfloorx\rfloor\phi(x)r)-
infty | |
\int | |
1 |
\lflooru\rfloor\phi'(u)du, \end{align}
Abel's summation formula can be generalized to the case where
\phi
\sumxan\phi(n)=A(y)\phi(y)-A(x)\phi(x)-
y | |
\int | |
x |
A(u)d\phi(u).
\phi
If
an=1
n\ge1
\phi(x)=1/x,
A(x)=\lfloorx\rfloor
\lfloorx\rfloor | |
\sum | |
n=1 |
1 | |
n |
=
\lfloorx\rfloor | |
x |
+
x | |
\int | |
1 |
\lflooru\rfloor | |
u2 |
du.
H\lfloor
Fix a complex number
s
an=1
n\ge1
\phi(x)=x-s,
A(x)=\lfloorx\rfloor
\lfloorx\rfloor | |
\sum | |
n=1 |
1 | |
ns |
=
\lfloorx\rfloor | |
xs |
+
x | |
s\int | |
1 |
\lflooru\rfloor | |
u1+s |
du.
\Re(s)>1
x\toinfty
\zeta(s)=
infty | |
s\int | |
1 |
\lflooru\rfloor | |
u1+s |
du.
\zeta(s)
\zeta(s)
The technique of the previous example may also be applied to other Dirichlet series. If
an=\mu(n)
\phi(x)=x-s
A(x)=M(x)=\sumn\mu(n)
1 | |
\zeta(s) |
=
infty | |
\sum | |
n=1 |
\mu(n) | |
ns |
=
infty | |
s\int | |
1 |
M(u) | |
u1+s |
du.
\Re(s)>1