ACSL5 explained
Long-chain-fatty-acid—CoA ligase 5 is an enzyme that in humans is encoded by the ACSL5 gene.[1] [2]
The protein encoded by this gene is an isozyme of the long-chain fatty-acid-coenzyme A ligase family. Although differing in substrate specificity, subcellular localization, and tissue distribution, all isozymes of this family convert free long-chain fatty acids into fatty acyl-CoA esters, and thereby play a key role in lipid biosynthesis and fatty acid degradation. This isozyme is highly expressed in uterus and spleen, and in trace amounts in normal brain, but has markedly increased levels in malignant gliomas. This gene functions in mediating fatty acid-induced glioma cell growth. Three transcript variants encoding two different isoforms have been found for this gene.[2]
Further reading
- Maruyama K, Sugano S . Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. . Gene . 138 . 1–2 . 171–4 . 1994 . 8125298 . 10.1016/0378-1119(94)90802-8 .
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K . Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library . Gene . 200 . 1–2 . 149–56 . 1997 . 9373149 . 10.1016/S0378-1119(97)00411-3 . etal.
- Lewin TM, Kim JH, Granger DA . Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently . J. Biol. Chem. . 276 . 27 . 24674–9 . 2001 . 11319232 . 10.1074/jbc.M102036200 . etal. free .
- Minekura H, Kang MJ, Inagaki Y . Genomic organization and transcription units of the human acyl-CoA synthetase 3 gene . Gene . 278 . 1–2 . 185–92 . 2002 . 11707336 . 10.1016/S0378-1119(01)00714-4 . etal.
- Lewin TM, Van Horn CG, Krisans SK, Coleman RA . Rat liver acyl-CoA synthetase 4 is a peripheral-membrane protein located in two distinct subcellular organelles, peroxisomes, and mitochondrial-associated membrane . Arch. Biochem. Biophys. . 404 . 2 . 263–70 . 2002 . 12147264 . 10.1016/S0003-9861(02)00247-3 .
- Strausberg RL, Feingold EA, Grouse LH . Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences . Proc. Natl. Acad. Sci. U.S.A. . 99 . 26 . 16899–903 . 2003 . 12477932 . 10.1073/pnas.242603899 . 139241 . etal . 2002PNAS...9916899M. free .
- Clark HF, Gurney AL, Abaya E . The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment . Genome Res. . 13 . 10 . 2265–70 . 2003 . 12975309 . 10.1101/gr.1293003 . 403697 . etal.
- Gassler N, Schneider A, Kopitz J . Impaired expression of acyl-CoA-synthetase 5 in epithelial tumors of the small intestine . Hum. Pathol. . 34 . 10 . 1048–52 . 2003 . 14608540 . 10.1053/S0046-8177(03)00431-3 . etal.
- Deloukas P, Earthrowl ME, Grafham DV . The DNA sequence and comparative analysis of human chromosome 10 . Nature . 429 . 6990 . 375–81 . 2004 . 15164054 . 10.1038/nature02462 . 2004Natur.429..375D . etal. free .
- Mashek DG, Bornfeldt KE, Coleman RA . Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family . J. Lipid Res. . 45 . 10 . 1958–61 . 2005 . 15292367 . 10.1194/jlr.E400002-JLR200 . etal. free .
- Gerhard DS, Wagner L, Feingold EA . The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) . Genome Res. . 14 . 10B . 2121–7 . 2004 . 15489334 . 10.1101/gr.2596504 . 528928 . etal.
- Gassler N, Obermüller N, Keith M . Characterization of metaplastic and heterotopic epithelia in the human gastrointestinal tract by the expression pattern of acyl-CoA synthetase 5 . Histol. Histopathol. . 20 . 2 . 409–14 . 2005 . 15736044 . etal.
- Obermüller N, Keith M, Kopitz J . Coeliac disease is associated with impaired expression of acyl-CoA-synthetase 5 . International Journal of Colorectal Disease . 21 . 2 . 130–4 . 2006 . 15809837 . 10.1007/s00384-004-0738-6 . 24263574 . etal.
- Achouri Y, Hegarty BD, Allanic D . Long chain fatty acyl-CoA synthetase 5 expression is induced by insulin and glucose: involvement of sterol regulatory element-binding protein-1c . Biochimie . 87 . 12 . 1149–55 . 2006 . 16198472 . 10.1016/j.biochi.2005.04.015 . etal.
- Adamo KB, Dent R, Langefeld CD . Peroxisome proliferator-activated receptor gamma 2 and acyl-CoA synthetase 5 polymorphisms influence diet response . Obesity . 15 . 5 . 1068–75 . 2007 . 17495181 . 10.1038/oby.2007.630 . 1525140 . etal.
- Gassler N, Roth W, Funke B . Regulation of enterocyte apoptosis by acyl-CoA synthetase 5 splicing . Gastroenterology . 133 . 2 . 587–98 . 2007 . 17681178 . 10.1053/j.gastro.2007.06.005 . etal. free .
- Zhou Y, Abidi P, Kim A . Transcriptional activation of hepatic ACSL3 and ACSL5 by oncostatin m reduces hypertriglyceridemia through enhanced beta-oxidation . Arterioscler. Thromb. Vasc. Biol. . 27 . 10 . 2198–205 . 2007 . 17761945 . 10.1161/ATVBAHA.107.148429 . etal. free .
Notes and References
- Yamashita Y, Kumabe T, Cho YY, Watanabe M, Kawagishi J, Yoshimoto T, Fujino T, Kang MJ, Yamamoto TT . Fatty acid induced glioma cell growth is mediated by the acyl-CoA synthetase 5 gene located on chromosome 10q25.1-q25.2, a region frequently deleted in malignant gliomas . Oncogene . 19 . 51 . 5919–25 . Dec 2000 . 11127823 . 10.1038/sj.onc.1203981 . free .
- Web site: Entrez Gene: ACSL5 acyl-CoA synthetase long-chain family member 5.