A8 polytope explained
In 8-dimensional
geometry, there are 135
uniform polytopes with A
8 symmetry. There is one self-dual regular form, the
8-simplex with 9 vertices.
Each can be visualized as symmetric orthographic projections in Coxeter planes of the A8 Coxeter group, and other subgroups.
Graphs
Symmetric orthographic projections of these 135 polytopes can be made in the A8, A7, A6, A5, A4, A3, A2 Coxeter planes. Ak has [k+1] symmetry.
These 135 polytopes are each shown in these 7 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
Notes and References
- http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter