Adenosine A2A receptor explained

The adenosine A2A receptor, also known as ADORA2A, is an adenosine receptor, and also denotes the human gene encoding it.[1] [2]

Structure

This protein is a member of the G protein-coupled receptor (GPCR) family which possess seven transmembrane alpha helices, as well as an extracellular N-terminus and an intracellular C-terminus. Furthermore, located in the intracellular side close to the membrane is a small alpha helix, often referred to as helix 8 (H8). The crystallographic structure of the adenosine A2A receptor reveals a ligand binding pocket distinct from that of other structurally determined GPCRs (i.e., the beta-2 adrenergic receptor and rhodopsin).[3] Below this primary (orthosteric) binding pocket lies a secondary (allosteric) binding pocket. The crystal-structure of A2A bound to the antagonist ZM241385 (PDB code: 4EIY) showed that a sodium-ion can be found in this location of the protein, thus giving it the name 'sodium-ion binding pocket'.[4]

Heteromers

The actions of the A2A receptor are complicated by the fact that a variety of functional heteromers composed of a mixture of A2A subunits with subunits from other unrelated G-protein coupled receptors have been found in the brain, adding a further degree of complexity to the role of adenosine in modulation of neuronal activity. Heteromers consisting of adenosine A1/A2A,[5] [6] dopamine D2/A2A[7] and D3/A2A,[8] glutamate mGluR5/A2A[9] and cannabinoid CB1/A2A[10] have all been observed, as well as CB1/A2A/D2 heterotrimers,[11] and the functional significance and endogenous role of these hybrid receptors is still only starting to be unravelled.[12] [13] [14]

The receptor's role in immunomodulation in the context of cancer has suggested that it is an important immune checkpoint molecule.[15]

Function

The gene encodes a protein which is one of several receptor subtypes for adenosine. The activity of the encoded protein, a G protein-coupled receptor family member, is mediated by G proteins which activate adenylyl cyclase, which induce synthesis of intracellular cAMP. The A2A receptor binds with the Gs protein at the intracellular site of the receptor. The Gs protein consists of three subunits; Gsα, Gsβ and Gsγ. A crystal structure of the A2A receptor bound with the agonist NECA and a G protein-mimic has been published in 2016 (PDB code: 5g53).[16]

The encoded protein (the A2A receptor) is abundant in basal ganglia, vasculature, T lymphocytes, and platelets and it is a major target of caffeine, which is a competitive antagonist of this protein.[17]

Physiological role

A1 and A2A receptors are believed to regulate myocardial oxygen demand and to increase coronary circulation by vasodilation. In addition, A2A receptor can suppress immune cells, thereby protecting tissue from inflammation.[18]

The A2A receptor is also expressed in the brain, where it has important roles in the regulation of glutamate and dopamine release, making it a potential therapeutic target for the treatment of conditions such as insomnia, pain, depression, and Parkinson's disease.[19] [20] [21] [22] [23] [24] [25]

Ligands

A number of selective A2A ligands have been developed,[26] with several possible therapeutic applications.[27]

Older research on adenosine receptor function, and non-selective adenosine receptor antagonists such as aminophylline, focused mainly on the role of adenosine receptors in the heart, and led to several randomized controlled trials using these receptor antagonists to treat bradyasystolic arrest.[28] [29] [30] [31] [32] [33] [34]

However the development of more highly selective A2A ligands has led towards other applications, with the most significant focus of research currently being the potential therapeutic role for A2A antagonists in the treatment of Parkinson's disease.[35] [36] [37] [38]

Agonists

Antagonists

Interactions

Adenosine A2A receptor has been shown to interact with Dopamine receptor D2.[50] As a result, Adenosine receptor A2A decreases activity in the Dopamine D2 receptors.

In cancer immunotherapy

The adenosine A2A receptor has also been shown to play a regulatory role in the adaptive immune system. In this role, it functions similarly to programmed cell death-1 (PD-1) and cytotoxic t-lymphocyte associated protein-4 (CTLA-4) receptors, namely to suppress immunologic response and prevent associated tissue damage. Extracellular adenosine gathers in response to cellular stress and breakdown through interactions with hypoxia induced HIF-1α.[51] Abundant extracellular adenosine can then bind to the A2A receptor resulting in a Gs-protein coupled response, resulting in the accumulation of intracellular cAMP, which functions primarily through protein kinase A to upregulate inhibitory cytokines such as transforming growth factor-beta (TGF-β) and inhibitory receptors (i.e., PD-1).[52] Interactions with FOXP3 stimulates CD4+ T-cells into regulatory Treg cells further inhibiting immune response.[53]

Blockade of A2AR has been attempted to various ends, namely cancer immunotherapy. While several A2A receptor antagonists have progressed to clinical trials for the treatment of Parkinson's disease, A2AR blockade in the context of cancer is less characterized. Mice treated with A2AR antagonists, such as ZM241385 (listed above) or caffeine, show significantly delayed tumor growth due to T-cells resistant to inhibition. This is further highlighted by A2AR knockout mice who show increased tumor rejection. Multiple checkpoint pathway inhibition has been shown to have an additive effect, as shown by an increase in response with blockade to PD-1 and CTLA-4 via monoclonal antibodies as compared to the blockade of a single pathway. The A2AR antogonist CPI-444 has shown this in combination with anti-PD-L1 or anti-CTLA-4 treatment as it eliminated tumors in up to 90% of treated mice, including restoration of immune responses in models that incompletely responded to anti-PD-L1 or anti-CTLA-4 monotherapy. Further, tumor growth was fully inhibited when mice with cleared tumors were later rechallenged, indicating that CPI-444 induced systemic antitumor immune memory. [54] Researchers believe that A2AR blockade could increase the efficacy of such treatments even further. Finally, inhibition of A2AR, either through pharmacologic or genetic targeting, in chimeric antigen receptor (CAR) T-cells reveals promising results. Blockade of A2AR in this setting has shown to increase tumor clearance through CAR T-cell therapy in mice.[55] Targeting of the A2A receptor is an attractive option for the treatment of a variety of cancers, especially with the therapeutic success of the blockade of other checkpoint pathways such as PD-1 and CTLA-4.

Further reading

Notes and References

  1. Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande J, Maenhaut C, Simons MJ, Dumont JE, Vassart G . 6 . Selective amplification and cloning of four new members of the G protein-coupled receptor family . Science . 244 . 4904 . 569–72 . May 1989 . 2541503 . 10.1126/science.2541503 . 1989Sci...244..569L .
  2. Libert F, Passage E, Parmentier M, Simons MJ, Vassart G, Mattei MG . Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor . Genomics . 11 . 1 . 225–7 . September 1991 . 1662665 . 10.1016/0888-7543(91)90125-X .
  3. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC . 6 . The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist . Science . 322 . 5905 . 1211–7 . November 2008 . 18832607 . 2586971 . 10.1126/science.1164772 . 2008Sci...322.1211J .
  4. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC . 6 . Structural basis for allosteric regulation of GPCRs by sodium ions . Science . 337 . 6091 . 232–6 . July 2012 . 22798613 . 3399762 . 10.1126/science.1219218 . 2012Sci...337..232L .
  5. Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R . 6 . Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers . The Journal of Neuroscience . 26 . 7 . 2080–7 . February 2006 . 16481441 . 6674939 . 10.1523/JNEUROSCI.3574-05.2006 .
  6. Ferre S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, Quiroz C, Justinova Z, Lluis C, Franco R, Goldberg SR . 6 . Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain . Frontiers in Bioscience . 13 . 13 . 2391–9 . January 2008 . 17981720 . 10.2741/2852 . free .
  7. Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg SR, Staines W, Jacobsen KX, Lluis C, Woods AS, Agnati LF, Franco R . 6 . Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function . Journal of Molecular Neuroscience . 26 . 2–3 . 209–20 . 2005 . 16012194 . 10.1385/JMN:26:2-3:209 . 427930 .
  8. Torvinen M, Marcellino D, Canals M, Agnati LF, Lluis C, Franco R, Fuxe K . Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes . Molecular Pharmacology . 67 . 2 . 400–7 . February 2005 . 15539641 . 10.1124/mol.104.003376 . 24475855 .
  9. Zezula J, Freissmuth M . The A(2A)-adenosine receptor: a GPCR with unique features? . British Journal of Pharmacology . 153 Suppl 1 . S1 . S184-90 . March 2008 . 18246094 . 2268059 . 10.1038/sj.bjp.0707674 .
  10. Ferré S, Goldberg SR, Lluis C, Franco R . Looking for the role of cannabinoid receptor heteromers in striatal function . Neuropharmacology . 56 . Suppl 1 . 226–34 . 2009 . 18691604 . 2635338 . 10.1016/j.neuropharm.2008.06.076 .
  11. Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, Tanganelli S, Müller CE, Fisone G, Lluis C, Agnati LF, Franco R, Fuxe K . 6 . Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis . Neuropharmacology . 54 . 5 . 815–23 . April 2008 . 18262573 . 10.1016/j.neuropharm.2007.12.011 . 195685369 .
  12. Ferré S, Ciruela F, Quiroz C, Luján R, Popoli P, Cunha RA, Agnati LF, Fuxe K, Woods AS, Lluis C, Franco R . 6 . Adenosine receptor heteromers and their integrative role in striatal function . TheScientificWorldJournal . 7 . 74–85 . November 2007 . 17982579 . 10.1100/tsw.2007.211 . 5901194 . free .
  13. Wardas J . Potential role of adenosine A2A receptors in the treatment of schizophrenia . Frontiers in Bioscience . 13 . 13 . 4071–96 . May 2008 . 18508501 . 10.2741/2995 . free .
  14. Simola N, Morelli M, Pinna A . Adenosine A2A receptor antagonists and Parkinson's disease: state of the art and future directions . Current Pharmaceutical Design . 14 . 15 . 1475–89 . 2008 . 18537671 . 10.2174/138161208784480072 .
  15. Cekic C, Linden J . Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment . Cancer Research . 74 . 24 . 7239–49 . December 2014 . 25341542 . 4459794 . 10.1158/0008-5472.CAN-13-3581 .
  16. Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG . Structure of the adenosine A(2A) receptor bound to an engineered G protein . Nature . 536 . 7614 . 104–7 . August 2016 . 27462812 . 4979997 . 10.1038/nature18966 . 2016Natur.536..104C .
  17. Web site: Entrez Gene: ADORA2A adenosine A2A receptor.
  18. Ohta A, Sitkovsky M . Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage . Nature . 414 . 6866 . 916–20 . 2001 . 11780065 . 10.1038/414916a . 2001Natur.414..916O . 4386419 .
  19. Hack SP, Christie MJ . Adaptations in adenosine signaling in drug dependence: therapeutic implications . Critical Reviews in Neurobiology . 15 . 3–4 . 235–74 . 2003 . 15248812 . 10.1615/CritRevNeurobiol.v15.i34.30 .
  20. Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA . Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications . Progress in Neurobiology . 83 . 5 . 293–309 . December 2007 . 17826884 . 10.1016/j.pneurobio.2007.07.001 . 27478825 .
  21. Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S . Adenosine A2A receptors and basal ganglia physiology . Progress in Neurobiology . 83 . 5 . 277–92 . December 2007 . 17646043 . 2148496 . 10.1016/j.pneurobio.2007.05.001 .
  22. Ferré S, Diamond I, Goldberg SR, Yao L, Hourani SM, Huang ZL, Urade Y, Kitchen I . 6 . Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain . Progress in Neurobiology . 83 . 5 . 332–47 . December 2007 . 17532111 . 2141681 . 10.1016/j.pneurobio.2007.04.002 .
  23. Brown RM, Short JL . Adenosine A(2A) receptors and their role in drug addiction . The Journal of Pharmacy and Pharmacology . 60 . 11 . 1409–30 . November 2008 . 18957161 . 10.1211/jpp/60.11.0001 .
  24. Cunha RA, Ferré S, Vaugeois JM, Chen JF . Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders . Current Pharmaceutical Design . 14 . 15 . 1512–24 . 2008 . 18537674 . 2423946 . 10.2174/138161208784480090 .
  25. Mingote S, Font L, Farrar AM, Vontell R, Worden LT, Stopper CM, Port RG, Sink KS, Bunce JG, Chrobak JJ, Salamone JD . 6 . Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway . The Journal of Neuroscience . 28 . 36 . 9037–46 . September 2008 . 18768698 . 2806668 . 10.1523/JNEUROSCI.1525-08.2008 .
    • Ongini E, Monopoli A, Cacciari B, Baraldi PG . Selective adenosine A2A receptor antagonists . Farmaco . 56 . 1–2 . 87–90 . 2001 . 11347973 . 10.1016/S0014-827X(01)01024-2 .
    • Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Monopoli A, Ongini E, Varani K, Borea PA . 6 . 7-Substituted 5-amino-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as A2A adenosine receptor antagonists: a study on the importance of modifications at the side chain on the activity and solubility . Journal of Medicinal Chemistry . 45 . 1 . 115–26 . January 2002 . 11754583 . 10.1021/jm010924c .
    • Baraldi PG, Fruttarolo F, Tabrizi MA, Preti D, Romagnoli R, El-Kashef H, Moorman A, Varani K, Gessi S, Merighi S, Borea PA . 6 . Design, synthesis, and biological evaluation of C9- and C2-substituted pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as new A2A and A3 adenosine receptors antagonists . Journal of Medicinal Chemistry . 46 . 7 . 1229–41 . March 2003 . 12646033 . 10.1021/jm021023m .
    • Weiss SM, Benwell K, Cliffe IA, Gillespie RJ, Knight AR, Lerpiniere J, Misra A, Pratt RM, Revell D, Upton R, Dourish CT . 6 . Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson's disease . Neurology . 61 . 11 Suppl 6 . S101-6 . December 2003 . 14663021 . 10.1212/01.WNL.0000095581.20961.7D . 12327094 .
    • Cristalli G, Lambertucci C, Taffi S, Vittori S, Volpini R . Medicinal chemistry of adenosine A2A receptor agonists . Current Topics in Medicinal Chemistry . 3 . 4 . 387–401 . 2003 . 12570757 . 10.2174/1568026033392282 . 2018-10-02 . dead . https://web.archive.org/web/20090504185814/http://www.bentham-direct.org/pages/content.php?CTMC%2F2003%2F00000003%2F00000004%2F0004R.SGM . 2009-05-04 .
    • Cacciari B, Pastorin G, Spalluto G . Medicinal chemistry of A2A adenosine receptor antagonists . Current Topics in Medicinal Chemistry . 3 . 4 . 403–11 . 2003 . 12570758 . 10.2174/1568026033392183 . 2018-10-02 . dead . https://web.archive.org/web/20090504204409/http://www.bentham-direct.org/pages/content.php?CTMC%2F2003%2F00000003%2F00000004%2F0005R.SGM . 2009-05-04 .
    • Cristalli G, Cacciari B, Dal Ben D, Lambertucci C, Moro S, Spalluto G, Volpini R . Highlights on the development of A(2A) adenosine receptor agonists and antagonists . ChemMedChem . 2 . 3 . 260–81 . March 2007 . 17177231 . 10.1002/cmdc.200600193 . 6973388 .
    • Diniz C, Borges F, Santana L, Uriarte E, Oliveira JM, Gonçalves J, Fresco P . Ligands and therapeutic perspectives of adenosine A(2A) receptors . Current Pharmaceutical Design . 14 . 17 . 1698–722 . 2008 . 18673194 . 10.2174/138161208784746842 . 2018-10-02 . dead . https://web.archive.org/web/20090504185731/http://www.bentham-direct.org/pages/content.php?CPD%2F2008%2F00000014%2F00000017%2F0009B.SGM . 2009-05-04 .
    • Cristalli G, Lambertucci C, Marucci G, Volpini R, Dal Ben D . A2A adenosine receptor and its modulators: overview on a druggable GPCR and on structure-activity relationship analysis and binding requirements of agonists and antagonists . Current Pharmaceutical Design . 14 . 15 . 1525–52 . 2008 . 18537675 . 10.2174/138161208784480081 .
    • Gillespie RJ, Adams DR, Bebbington D, Benwell K, Cliffe IA, Dawson CE, Dourish CT, Fletcher A, Gaur S, Giles PR, Jordan AM, Knight AR, Knutsen LJ, Lawrence A, Lerpiniere J, Misra A, Porter RH, Pratt RM, Shepherd R, Upton R, Ward SE, Weiss SM, Williamson DS . 6 . Antagonists of the human adenosine A2A receptor. Part 1: Discovery and synthesis of thieno[3,2-d]pyrimidine-4-methanone derivatives . Bioorganic & Medicinal Chemistry Letters . 18 . 9 . 2916–9 . May 2008 . 18406614 . 10.1016/j.bmcl.2008.03.075 .
    • Gillespie RJ, Cliffe IA, Dawson CE, Dourish CT, Gaur S, Giles PR, Jordan AM, Knight AR, Lawrence A, Lerpiniere J, Misra A, Pratt RM, Todd RS, Upton R, Weiss SM, Williamson DS . 6 . Antagonists of the human adenosine A2A receptor. Part 2: Design and synthesis of 4-arylthieno[3,2-d]pyrimidine derivatives . Bioorganic & Medicinal Chemistry Letters . 18 . 9 . 2920–3 . May 2008 . 18407496 . 10.1016/j.bmcl.2008.03.076 .
    • Gillespie RJ, Cliffe IA, Dawson CE, Dourish CT, Gaur S, Jordan AM, Knight AR, Lerpiniere J, Misra A, Pratt RM, Roffey J, Stratton GC, Upton R, Weiss SM, Williamson DS . 6 . Antagonists of the human adenosine A2A receptor. Part 3: Design and synthesis of pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3-d]pyrimidines and 6-arylpurines . Bioorganic & Medicinal Chemistry Letters . 18 . 9 . 2924–9 . May 2008 . 18411049 . 10.1016/j.bmcl.2008.03.072 .
    • Sullivan GW . Adenosine A2A receptor agonists as anti-inflammatory agents . Current Opinion in Investigational Drugs . 4 . 11 . 1313–9 . November 2003 . 14758770 .
    • Lappas CM, Sullivan GW, Linden J . Adenosine A2A agonists in development for the treatment of inflammation . Expert Opinion on Investigational Drugs . 14 . 7 . 797–806 . July 2005 . 16022569 . 10.1517/13543784.14.7.797 . 19306651 .
    • El Yacoubi M, Costentin J, Vaugeois JM . Adenosine A2A receptors and depression . Neurology . 61 . 11 Suppl 6 . S82-7 . December 2003 . 14663017 . 10.1212/01.WNL.0000095220.87550.F6 . 36219448 .
    • Kaster MP, Rosa AO, Rosso MM, Goulart EC, Santos AR, Rodrigues AL . Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors . Neuroscience Letters . 355 . 1–2 . 21–4 . January 2004 . 14729225 . 10.1016/j.neulet.2003.10.040 . 29253187 .
    • Takahashi RN, Pamplona FA, Prediger RD . Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies . Frontiers in Bioscience . 13 . 13 . 2614–32 . January 2008 . 17981738 . 10.2741/2870 . free .
    • Lobato KR, Binfaré RW, Budni J, Rosa AO, Santos AR, Rodrigues AL . Involvement of the adenosine A1 and A2A receptors in the antidepressant-like effect of zinc in the forced swimming test . Progress in Neuro-Psychopharmacology & Biological Psychiatry . 32 . 4 . 994–9 . May 2008 . 18289757 . 10.1016/j.pnpbp.2008.01.012 . 36068948 .
  26. Burton JH, Mass M, Menegazzi JJ, Yealy DM . Aminophylline as an adjunct to standard advanced cardiac life support in prolonged cardiac arrest . Annals of Emergency Medicine . 30 . 2 . 154–8 . August 1997 . 9250637 . 10.1016/S0196-0644(97)70134-3 .
  27. Khoury MY, Moukarbel GV, Obeid MY, Alam SE . Effect of aminophylline on complete atrioventricular block with ventricular asystole following blunt chest trauma . Injury . 32 . 4 . 335–8 . May 2001 . 11325371 . 10.1016/S0020-1383(00)00222-9 .
  28. Mader TJ, Bertolet B, Ornato JP, Gutterman JM . Aminophylline in the treatment of atropine-resistant bradyasystole . Resuscitation . 47 . 2 . 105–12 . October 2000 . 11008148 . 10.1016/S0300-9572(00)00234-3 .
  29. Mader TJ, Smithline HA, Durkin L, Scriver G . A randomized controlled trial of intravenous aminophylline for atropine-resistant out-of-hospital asystolic cardiac arrest . Academic Emergency Medicine . 10 . 3 . 192–7 . March 2003 . 12615581 . 10.1197/aemj.10.3.192 . free .
  30. Mader TJ, Gibson P . Adenosine receptor antagonism in refractory asystolic cardiac arrest: results of a human pilot study . Resuscitation . 35 . 1 . 3–7 . August 1997 . 9259053 . 10.1016/S0300-9572(97)01097-6 .
  31. Perouansky M, Shamir M, Hershkowitz E, Donchin Y . Successful resuscitation using aminophylline in refractory cardiac arrest with asystole . Resuscitation . 38 . 1 . 39–41 . July 1998 . 9783508 . 10.1016/S0300-9572(98)00079-3 .
  32. Viskin S, Belhassen B, Roth A, Reicher M, Averbuch M, Sheps D, Shalabye E, Laniado S . 6 . Aminophylline for bradyasystolic cardiac arrest refractory to atropine and epinephrine . Annals of Internal Medicine . 118 . 4 . 279–81 . February 1993 . 8420445 . 10.7326/0003-4819-118-4-199302150-00006 . 44883687 .
  33. Jenner P . A2A antagonists as novel non-dopaminergic therapy for motor dysfunction in PD . Neurology . 61 . 11 Suppl 6 . S32-8 . December 2003 . 14663007 . 10.1212/01.WNL.0000095209.59347.79 . 28897242 .
  34. Mori A, Shindou T . Modulation of GABAergic transmission in the striatopallidal system by adenosine A2A receptors: a potential mechanism for the antiparkinsonian effects of A2A antagonists . Neurology . 61 . 11 Suppl 6 . S44-8 . December 2003 . 14663009 . 10.1212/01.WNL.0000095211.71092.A0 . 26827799 .
  35. Pinna A, Wardas J, Simola N, Morelli M . New therapies for the treatment of Parkinson's disease: adenosine A2A receptor antagonists . Life Sciences . 77 . 26 . 3259–67 . November 2005 . 15979104 . 10.1016/j.lfs.2005.04.029 .
  36. Kelsey JE, Langelier NA, Oriel BS, Reedy C . The effects of systemic, intrastriatal, and intrapallidal injections of caffeine and systemic injections of A2A and A1 antagonists on forepaw stepping in the unilateral 6-OHDA-lesioned rat . Psychopharmacology . 201 . 4 . 529–39 . January 2009 . 18791705 . 10.1007/s00213-008-1319-0 . 24159282 .
  37. Jacobson KA, Gao ZG . Adenosine receptors as therapeutic targets . Nature Reviews. Drug Discovery . 5 . 3 . 247–64 . March 2006 . 16518376 . 3463109 . 10.1038/nrd1983 . table 1 lists affinities
  38. Yoneyama F, Yamada H, Satoh K, Taira N . Vasodepressor mechanisms of 2-(1-octynyl)-adenosine (YT-146), a selective adenosine A2 receptor agonist, involve the opening of glibenclamide-sensitive K+ channels . European Journal of Pharmacology . 213 . 2 . 199–204 . March 1992 . 1521559 . 10.1016/0014-2999(92)90682-T .
  39. Crystal Structure and Subsequent Ligand Design of a Nonriboside Partial Agonist Bound to the Adenosine A2A Receptor . 10.1021/acs.jmedchem.0c01856 . 2021 . Journal of Medicinal Chemistry . 64 . 7 . 3827–3842 . 33764785 . 8154574 . Amelia T, Van Veldhoven JP, Falsini M, Liu R, Heitman LH, Van Westen GJ, Segala E, Verdon G, Cheng RK, Cooke RM, Van Der Es D, Ijzerman AP .
  40. 10.3390/biomedicines10020515 . free . Ribose and Non-Ribose A2A Adenosine Receptor Agonists: Do They Share the Same Receptor Recognition Mechanism? . 2022 . Biomedicines . 10 . 2 . 515 . 35203724 . Bolcato G, Pavan M, Bassani D, Sturlese M, Moro S . 8962312 .
  41. Burstein . Sumner . Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorganic & Medicinal Chemistry . 7 February 2015 . 23 . 7 . 1377–1385 . 10.1016/j.bmc.2015.01.059 . 25703248 .
  42. Doyle SE, Breslin FJ, Rieger JM, Beauglehole A, Lynch WJ . Time and sex-dependent effects of an adenosine A2A/A1 receptor antagonist on motivation to self-administer cocaine in rats . Pharmacology, Biochemistry, and Behavior . 102 . 2 . 257–63 . August 2012 . 22579716 . 3383440 . 10.1016/j.pbb.2012.05.001 .
  43. Kase H, Aoyama S, Ichimura M, Ikeda K, Ishii A, Kanda T, Koga K, Koike N, Kurokawa M, Kuwana Y, Mori A, Nakamura J, Nonaka H, Ochi M, Saki M, Shimada J, Shindou T, Shiozaki S, Suzuki F, Takeda M, Yanagawa K, Richardson PJ, Jenner P, Bedard P, Borrelli E, Hauser RA, Chase TN . 6 . Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease . Neurology . 61 . 11 Suppl 6 . S97-100 . December 2003 . 14663020 . 10.1212/01.WNL.0000095219.22086.31 . 72084113 .
  44. Mott AM, Nunes EJ, Collins LE, Port RG, Sink KS, Hockemeyer J, Müller CE, Salamone JD . 6 . The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure . Psychopharmacology . 204 . 1 . 103–12 . May 2009 . 19132351 . 2875244 . 10.1007/s00213-008-1441-z .
  45. Hodgson RA, Bertorelli R, Varty GB, Lachowicz JE, Forlani A, Fredduzzi S, Cohen-Williams ME, Higgins GA, Impagnatiello F, Nicolussi E, Parra LE, Foster C, Zhai Y, Neustadt BR, Stamford AW, Parker EM, Reggiani A, Hunter JC . 6 . Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4-difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] in rodent models of movement disorders and depression . The Journal of Pharmacology and Experimental Therapeutics . 330 . 1 . 294–303 . July 2009 . 19332567 . 10.1124/jpet.108.149617 . 22033475 .
  46. Pinna A, Fenu S, Morelli M . Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats . Synapse . 39 . 3 . 233–8 . March 2001 . 11284438 . 10.1002/1098-2396(20010301)39:3<233::AID-SYN1004>3.0.CO;2-K . 23370571 .
  47. Rose S, Jackson MJ, Smith LA, Stockwell K, Johnson L, Carminati P, Jenner P . The novel adenosine A2a receptor antagonist ST1535 potentiates the effects of a threshold dose of L-DOPA in MPTP treated common marmosets . European Journal of Pharmacology . 546 . 1–3 . 82–7 . September 2006 . 16925991 . 10.1016/j.ejphar.2006.07.017 .
  48. Kamiya T, Saitoh O, Yoshioka K, Nakata H . Oligomerization of adenosine A2A and dopamine D2 receptors in living cells . Biochemical and Biophysical Research Communications . 306 . 2 . 544–9 . June 2003 . 12804599 . 10.1016/S0006-291X(03)00991-4 .
  49. Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A . Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia . Clinical Cancer Research . 14 . 19 . 5947–52 . October 2008 . 18829471 . 10.1158/1078-0432.CCR-08-0229 . free .
  50. Leone RD, Lo YC, Powell JD . A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy . Computational and Structural Biotechnology Journal . 13 . 265–72 . April 2015 . 25941561 . 4415113 . 10.1016/j.csbj.2015.03.008 .
  51. Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy . Nature Reviews. Cancer . 12 . 4 . 252–64 . March 2012 . 22437870 . 4856023 . 10.1038/nrc3239 .
  52. Willingham SB . A2AR Antagonism with CPI-444 Induces Antitumor Responses and Augments Efficacy to Anti-PD-(L)1 and Anti-CTLA-4 in Preclinical Models . Cancer Immunol Res . 6 . 10 . 1136–1149 . October 2018 . 10.1158/2326-6066.CIR-18-0056 . 30131376 .
  53. Beavis PA, Henderson MA, Giuffrida L, Mills JK, Sek K, Cross RS, Davenport AJ, John LB, Mardiana S, Slaney CY, Johnstone RW, Trapani JA, Stagg J, Loi S, Kats L, Gyorki D, Kershaw MH, Darcy PK . 6 . Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy . The Journal of Clinical Investigation . 127 . 3 . 929–941 . March 2017 . 28165340 . 5330718 . 10.1172/JCI89455 .