9000 (number) explained
Number: | 9000 |
Roman: | M, or |
Unicode: | M, m,, |
Lang1: | Armenian |
Lang1 Symbol: | Ք |
9000 (nine thousand) is the natural number following 8999 and preceding 9001.
Selected numbers in the range 9001–9999
9001 to 9099
9100 to 9199
9200 to 9299
9300 to 9399
9400 to 9499
9500 to 9599
- 9511 - prime number
- 9521 - prime number
- 9533 - prime number
- 9539 – Sophie Germain prime, super-prime
- 9551 – first prime followed by as many as 35 consecutive composite numbers
- 9587 – safe prime, follows 35 consecutive composite numbers
- 9591 – triangular number
- 9592 - amount of prime numbers under 100,000
9600 to 9699
- 9601 – Proth prime
- 9604 = 982
- 9619 – super-prime
- 9629 – Sophie Germain prime
- 9647 – centered heptagonal number
- 9661 – super-prime, sum of nine consecutive primes (1049 + 1051 + 1061 + 1063 + 1069 + 1087 + 1091 + 1093 + 1097)
- 9689 – Sophie Germain prime
- 9699 – nonagonal number
9700 to 9799
- 9721 – prime of the form 2p-1
- 9730 – triangular number
- 9739 – super-prime
- 9743 – safe prime
- 9791 – Sophie Germain prime
9800 to 9899
- 9800 – member of a Ruth-Aaron pair (first definition) with 9801
- 9801 = 992, the largest 4 digit perfect square, centered octagonal number, square pentagonal number, member of a Ruth-Aaron pair (first definition) with 9800
- 9833 – super-prime
- 9839 – safe prime
- 9850 – decagonal number
- 9855 – magic constant of n × n normal magic square and n-Queens Problem for n = 27.
- 9857 – Proth prime
- 9859 – super-prime
- 9870 – triangular number
- 9871 – balanced prime
- 9880 – tetrahedral number[7]
- 9887 – safe prime
9900 to 9999
- 9901 – unique prime, sum of seven consecutive primes (1381 + 1399 + 1409 + 1423 + 1427 + 1429 + 1433)[8]
- 9905 – number of compositions of 16 whose run-lengths are either weakly increasing or weakly decreasing[9]
- 9923 – super-prime, probably smallest certainly executable prime number on x86 MS-DOS
- 9949 – sum of nine consecutive primes (1087 + 1091 + 1093 + 1097 + 1103 + 1109 + 1117 + 1123 + 1129)
- 9973 – super-prime
- 9988 – number of prime knots with 13 crossings
- 9999 – Kaprekar number, repdigit
Prime numbers
There are 112 prime numbers between 9000 and 10000:[10]
9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973
Notes and References
- 3*x*y*z..
- n^2*(n+1)/2..
- C(n+2,3) = n*(n+1)*(n+2)/6..
- GENERALIZED SIERPIŃSKI NUMBERS TO BASE b . Brunner, Amy . Caldwell, Chris K. . Krywaruczenko, Daniel . Lownsdale, Chris . 数理解析研究所講究録 [Notes from the Institute of Mathematical Analysis (in, New Aspects of Analytic Number Theory)] . . Kyoto . 1639 . 2009 . 69–79 . 2433/140555 . 38654417 .
- n*(2*n^2 + 1)/3..
- 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6..
- Web site: Sloane's A000292 : Tetrahedral numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-14.
- Web site: Sloane's A040017 : Unique period primes. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-06-14.
- 2022-06-02.
- Web site: Stein . William A. . William A. Stein . The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture . wstein.org . 10 February 2017 . 6 February 2021.