Intel MCS-48 explained

+ Intel 8048 registers
09080706050403020100(bit position)
Main registers
 AAccumulator
PCProgram Counter
Program Status Word
 CYACFOBS1Stack
Note: All other programmer-visible registers and stack are allocated in RAM.

The MCS-48 microcontroller series, Intel's first microcontroller, was originally released in 1976. Its first members were 8048, 8035 and 8748. The 8048[1] is arguably the most prominent member of the family. Initially, this family was produced using NMOS (n-type metal–oxide–semiconductor) technology. In the early 1980s, it became available in CMOS technology. It was manufactured into the 1990s to support older designs that still used it.

The MCS-48 series has a modified Harvard architecture, with internal or external program ROM and 64 to 256 bytes of internal (on-chip) RAM. The I/O is mapped into its own address space, separate from programs and data.

Though the MCS-48 series was eventually replaced by the very successful MCS-51 series, it remained quite popular even by the year 2000 due to its low cost, wide availability, memory-efficient one-byte instruction set, and mature development tools. Because of this, it is used in high-volume, cost-sensitive consumer electronics devices such as TV remotes, computer keyboards, and toys.

Variants

The 8049 has 2 KB of masked ROM (the 8748 and 8749 had EPROM) that can be replaced with a 4 KB external ROM, as well as 128 bytes of RAM and 27 I/O ports. The microcontroller's oscillator block divides the clock input frequency by three and then further divides the result into five machine states. Using the 11 MHz maximum crystal frequency will produce 0.73 MIPS of single-cycle instructions. Some 70% of instructions are single byte and single cycle ones, but 30% need two cycles or two bytes, so its typical performance would be closer to 0.5 MIPS.

Microcontroller! Device !! Internal !! Memory !! Remarks
8020 1K × 8 ROM 64 × 8 RAM subset of 8048, 20 pins, only 13 I/O lines
8021 1K × 8 ROM 64 × 8 RAM subset of 8048, 28 pins, 21 I/O lines
8022 2K × 8 ROM 64 × 8 RAM subset of 8048, A/D-converter
8035 none 64 × 8 RAM
8038 none 64 × 8 RAM
8039 none 128 × 8 RAM
8040 none 256 × 8 RAM
8048 1K × 8 ROM 64 × 8 RAM 27× I/O ports
8049 2K × 8 ROM 128 × 8 RAM 27× I/O ports
8050 4K x 8 ROM 256 × 8 RAM
8648 1K × 8 OTP EPROM 64 × 8 RAM Factory OTP EPROM
8748 1K × 8 EPROM[2] 64 × 8 RAM 4K program memory expandable, 2× 8-bit timers, 27× I/O ports
8749 2K × 8 EPROM 128 × 8 RAM 2× 8-bit timers, 27× I/O ports
87P50 ext. ROM socket 256 × 8 RAM Has piggy-back socket for 2758/2716/2732 EPROM
Universal Peripheral Interface! Device !! Internal !! Memory !! Remarks
8041 1K × 8 ROM 64 × 8 RAM Universal Peripheral Interface (UPI)
8041AH 1K × 8 ROM 128 × 8 RAM UPI
8741A 1K × 8 EPROM 64 × 8 RAM UPI, EPROM version of 8041
8741AH 1K × 8 OTP EPROM 128 × 8 RAM UPI, OTP EPROM version of 8041AH
8042AH 2K × 8 ROM 256 × 8 RAM UPI
8242 2K × 8 ROM 256 × 8 RAM UPI, preprogrammed with keyboard controller firmware[3]
8742 2K × 8 EPROM 128 × 8 RAM UPI, EPROM version
8742AH 2K × 8 OTP EPROM 256 × 8 RAM UPI, OTP EPROM version of 8042AH

Uses

The MCS-48 series was commonly used in computer and terminal keyboards, converting key presses into protocols that can be understood by digital circuits. This also allows the possibility of serial communication, reducing the amount of conductors needed in cables on external keyboards. Microprocessors had been used in keyboards since at least 1972, simplifying earlier discrete designs. The 8048 has been used in this application since its introduction in 1978.

The Tandy/Radio Shack TRS-80 Model II, released in 1979, used the 8021 in its keyboard.[4] The 8021 processor scans the key matrix, converts switch closures to an 8-bit code and then transmits that code serially to the keyboard interface on the main system. It will also accept commands to turn indicator LEDs on or off. The 8021 was also used in the keyboards for the TRS-80 Model 12, 12B, 16, 16B and the Tandy 6000/6000HD.[5]

The original IBM PC keyboard used an 8048 as its internal microcontroller. The PC AT replaced the PC's Intel 8255 peripheral interface chip at I/O port addresses with an 8042 accessible through port addresses and . As well as managing the keyboard interface, the 8042 controlled the A20 line gating function for the AT's Intel 80286 CPU and could be commanded by software to reset the 80286 (unlike the 80386 and later processors, the 80286 had no way of switching from protected mode back to real mode except by being reset). Later PC compatibles integrate the 8042's functions into their super I/O devices.

The 8048 was used in the Magnavox Odyssey² video game console, the Korg Trident series,[6] and the Korg Poly-61,[7] Roland Jupiter-4 and Roland ProMars[8] analog synthesizers. The Sinclair QL used the closely related Intel 8049 to manage its keyboard, joystick ports, RS-232 inputs and audio. The ROM-less 8035 variant was used in Nintendo's arcade game Donkey Kong to generate the background music.

Derived microcontrollers

Philips Semiconductors (now NXP) owned a license to produce this series and developed their MAB8400-family based on this architecture. These were the first microcontrollers with an integrated I²C-interface and were used in the first Philips (Magnavox in the US) Compact Disc players (e.g. the CD-100).[9]

See also

Bibliography

MCS-48
UPI-41

External links

Notes and References

  1. David . Laws . Henry . Blume Jr. . John . Ekiss . Yung . Feng . Barbara . Kline . Howard . Raphael . David . Stamm . Oral History Panel on the Development and Promotion of the Intel 8048 Microcontroller. 2008-07-30 . https://web.archive.org/web/20141227131405/http://archive.computerhistory.org/resources/access/text/2013/05/102658328-05-01-acc.pdf . 2014-12-27 .
  2. Book: Hayes, John P. . Computer Architecture and Organization . 0-07-027363-4 . 1978 . McGraw-Hill International Book Company . 57-59.
  3. Web site: UPI-41AH/42AH Universal Peripheral Interface 8-bit Slave Microcontroller . Intel . November 1994 . 2022-07-19 . 2.
  4. Book: TRS-80 Model II Technical Reference Manual . Radio Shack . 135.
  5. Book: Tandy 6000/6000HD Service Manual . 1985 . Tandy/Radio Shack . 213.
  6. Web site: Korg Trident Service Manual. 4 . Korg . Synthfool . 10 February 2018.
  7. Web site: Korg Poly-61 Service Manual. 2013-03-07. 2010-06-02. https://web.archive.org/web/20100602041214/http://fa.utfs.org/diy/korgpoly61/Korg_Poly-61_ServiceManual.pdf. dead.
  8. Web site: The History Of Roland, Part 1: 1930–1978. The History Of Roland. Sound On Sound Magazine. 29 November 2010. Gordon Reid. November 2004.
  9. http://arquivo.pt/wayback/20160515111736/http://www.datasheetarchive.com/dl/Datasheets-110/DSAP005622.pdf Datasheet (pdf)