bgcolor=#e7dcc3 colspan=3 | Demihepteract (7-demicube) | ||
---|---|---|---|
bgcolor=#ffffff align=center colspan=3 | Petrie polygon projection | ||
Type | Uniform 7-polytope | ||
Family | demihypercube | ||
Coxeter symbol | 141 | ||
Schläfli symbol | = h s | ||
Coxeter diagrams | = | ||
6-faces | 78 | 14 64 | |
5-faces | 532 | 84 448 | |
4-faces | 1624 | 280 1344 | |
Cells | 2800 | 560 2240 | |
Faces | 2240 | ||
Edges | 672 | ||
Vertices | 64 | ||
Vertex figure | Rectified 6-simplex | ||
Symmetry group | D7, [3<sup>4,1,1</sup>] = [1<sup>+</sup>,4,3<sup>5</sup>] [2<sup>6</sup>]+ | ||
Dual | ? | ||
Properties | convex |
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM7 for a 7-dimensional half measure polytope.
\left\{3\begin{array}{l}3,3,3,3\\3\end{array}\right\}
Cartesian coordinates for the vertices of a demihepteract centered at the origin are alternate halves of the hepteract:
(±1,±1,±1,±1,±1,±1,±1)with an odd number of plus signs.
This configuration matrix represents the 7-demicube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-demicube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1] [2]
The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.
D7 | k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | f6 | k-figures | notes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A6 | f0 | 64 | 21 | 105 | 35 | 140 | 35 | 105 | 21 | 42 | 7 | 7 | D7/A6 = 64*7!/7 | = 64 | |||
A4A1A1 | f1 | 2 | 672 | 10 | 5 | 20 | 10 | 20 | 10 | 10 | 5 | 2 | D7/A4A1A1 = 64*7!/5 | /2/2 = 672 | |||
A3A2 | 100 | f2 | 3 | 3 | 2240 | 1 | 4 | 4 | 6 | 6 | 4 | 4 | 1 | D7/A3A2 = 64*7!/4 | /3! = 2240 | ||
A3A3 | 101 | f3 | 4 | 6 | 4 | 560 | 4 | 0 | 6 | 0 | 4 | 0 | D7/A3A3 = 64*7!/4 | /4! = 560 | |||
A3A2 | 110 | 4 | 6 | 4 | 2240 | 1 | 3 | 3 | 3 | 3 | 1 | D7/A3A2 = 64*7!/4 | /3! = 2240 | ||||
D4A2 | 111 | f4 | 8 | 24 | 32 | 8 | 8 | 280 | 3 | 0 | 3 | 0 | D7/D4A2 = 64*7!/8/4 | /2 = 280 | |||
A4A1 | 120 | 5 | 10 | 10 | 0 | 5 | 1344 | 1 | 2 | 2 | 1 | D7/A4A1 = 64*7!/5 | /2 = 1344 | ||||
D5A1 | 121 | f5 | 16 | 80 | 160 | 40 | 80 | 10 | 16 | 84 | 2 | 0 | D7/D5A1 = 64*7!/16/5 | /2 = 84 | |||
A5 | 130 | 6 | 15 | 20 | 0 | 15 | 0 | 6 | 448 | 1 | 1 | D7/A5 = 64*7!/6 | = 448 | ||||
D6 | 131 | f6 | 32 | 240 | 640 | 160 | 480 | 60 | 192 | 12 | 32 | 14 | D7/D6 = 64*7!/32/6 | = 14 | |||
A6 | 140 | 7 | 21 | 35 | 0 | 35 | 0 | 21 | 0 | 7 | 64 | D7/A6 = 64*7!/7 | = 64 |
There are 95 uniform polytopes with D6 symmetry, 63 are shared by the B6 symmetry, and 32 are unique: