34 equal temperament explained

In musical theory, 34 equal temperament, also referred to as 34-TET, 34-EDO or 34-ET, is the tempered tuning derived by dividing the octave into 34 equal-sized steps (equal frequency ratios). Each step represents a frequency ratio of, or 35.29 cents .

History and use

Unlike divisions of the octave into 19, 31 or 53 steps, which can be considered as being derived from ancient Greek intervals (the greater and lesser diesis and the syntonic comma), division into 34 steps did not arise 'naturally' out of older music theory, although Cyriakus Schneegass proposed a meantone system with 34 divisions based in effect on half a chromatic semitone (the difference between a major third and a minor third, 25:24 or 70.67 cents). Wider interest in the tuning was not seen until modern times, when the computer made possible a systematic search of all possible equal temperaments. While Barbour discusses it,[1] the first recognition of its potential importance appears to be in an article published in 1979 by the Dutch theorist Dirk de Klerk. The luthier Larry Hanson had an electric guitar refretted from 12 to 34 and persuaded American guitarist Neil Haverstick to take it up.

As compared with 31-et, 34-et reduces the combined mistuning from the theoretically ideal just thirds, fifths and sixths from 11.9 to 7.9 cents. Its fifths and sixths are markedly better, and its thirds only slightly further from the theoretical ideal of the 5:4 ratio. Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B, thus making a distinction between major tones, ratio 9:8 and minor tones, ratio 10:9. This can be regarded either as a resource or as a problem, making modulation in the contemporary Western sense more complex. As the number of divisions of the octave is even, the exact halving of the octave (600 cents) appears, as in 12-et. Unlike 31-et, 34 does not give an approximation to the harmonic seventh, ratio 7:4.

Interval size

The following table outlines some of the intervals of this tuning system and their match to various ratios in the harmonic series.

align=center bgcolor="#ffffb4"interval namealign=center bgcolor="#ffffb4"size (steps)align=center bgcolor="#ffffb4"size (cents)align=center bgcolor="#ffffb4"midialign=center bgcolor="#ffffb4"just ratioalign=center bgcolor="#ffffb4"just (cents)align=center bgcolor="#ffffb4"midialign=center bgcolor="#ffffb4"error
octave3412002:112000
perfect fifth20705.883:2701.95+3.93
septendecimal tritone17600.0017:12603.00−3.00
align=center bgcolor="#D4D4D4"lesser septimal tritonealign=center bgcolor="#D4D4D4"17align=center bgcolor="#D4D4D4"600.00align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"7:5align=center bgcolor="#D4D4D4"582.51align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"+17.49
tridecimal narrow tritone16564.7118:13563.38+1.32
align=center bgcolor="#D4D4D4"11:8 wide fourthalign=center bgcolor="#D4D4D4"16align=center bgcolor="#D4D4D4"564.71align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"11:8align=center bgcolor="#D4D4D4"551.32align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"+13.39
undecimal wide fourth15529.4115:11536.95−7.54
perfect fourth14494.124:3498.04−3.93
tridecimal major third13458.8213:10454.21+4.61
align=center bgcolor="#D4D4D4"septimal major thirdalign=center bgcolor="#D4D4D4"12align=center bgcolor="#D4D4D4"423.53align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"9:7align=center bgcolor="#D4D4D4"435.08align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"−11.55
undecimal major third12423.5314:11417.51+6.02
major third11388.245:4386.31+1.92
tridecimal neutral third10352.9416:13359.47−6.53
undecimal neutral third10352.9411:9347.41+5.53
minor third9317.656:5315.64+2.01
tridecimal minor third8282.3513:11289.21−6.86
align=center bgcolor="#D4D4D4"septimal minor thirdalign=center bgcolor="#D4D4D4"8align=center bgcolor="#D4D4D4"282.35align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"7:6align=center bgcolor="#D4D4D4"266.87align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"+15.48
tridecimal semimajor second7247.0615:13247.74−0.68
align=center bgcolor="#D4D4D4"septimal whole tonealign=center bgcolor="#D4D4D4"7align=center bgcolor="#D4D4D4"247.06align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"8:7align=center bgcolor="#D4D4D4"231.17align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"+15.88
whole tone, major tone6211.769:8203.91+7.85
whole tone, minor tone5176.4710:9182.40−5.93
align=center bgcolor="#D4D4D4"neutral second, greater undecimalalign=center bgcolor="#D4D4D4"5align=center bgcolor="#D4D4D4"176.47align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"11:10align=center bgcolor="#D4D4D4"165.00align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"+11.47
align=center bgcolor="#D4D4D4"neutral second, lesser undecimalalign=center bgcolor="#D4D4D4"4align=center bgcolor="#D4D4D4"141.18align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"12:11align=center bgcolor="#D4D4D4"150.64align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"−9.46
greater tridecimal -tone4141.1813:12138.57+2.60
align=center bgcolor="#D4D4D4"lesser tridecimal -tonealign=center bgcolor="#D4D4D4"4align=center bgcolor="#D4D4D4"141.18align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"14:13align=center bgcolor="#D4D4D4"128.30align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"+12.88
align=center bgcolor="#D4D4D4"15:14 semitonealign=center bgcolor="#D4D4D4"3align=center bgcolor="#D4D4D4"105.88align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"15:14align=center bgcolor="#D4D4D4"119.44align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"−13.56
diatonic semitone3105.8816:15111.73−5.85
17th harmonic3105.8817:16104.96+0.93
align=center bgcolor="#D4D4D4"21:20 semitonealign=center bgcolor="#D4D4D4"2align=center bgcolor="#D4D4D4"70.59align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"21:20align=center bgcolor="#D4D4D4"84.47align=center bgcolor="#D4D4D4"align=center bgcolor="#D4D4D4"−13.88
chromatic semitone270.5925:2470.67−0.08
28:27 semitone270.5928:2762.96+7.63
septimal sixth-tone135.2950:4934.98+0.31

Scale diagram

The following are 15 of the 34 notes in the scale:

align=center bgcolor="#ffeeee"Interval (cents)106106703570106106106703570106106106
align=center bgcolor="#fffbee"Note nameCC/DDDEEFF/GGGAAA/BBC
align=center bgcolor="#eeeeff"Note (cents)  0  10621228231838849460070677681288298810941200

The remaining notes can easily be added.

References

External links

Notes and References

  1. Tuning and Temperament, Michigan State College Press, 1951