List of semiconductor scale examples explained

Listed are many semiconductor scale examples for various metal–oxide–semiconductor field-effect transistor (MOSFET, or MOS transistor) semiconductor manufacturing process nodes.

Timeline of MOSFET demonstrations

See also: MOSFET and Semiconductor device fabrication.

PMOS and NMOS

Channel length! data-sort-type="number"
Oxide thickness[1] MOSFET logicResearcher(s)Organization
20,000 nm100 nmPMOSMohamed M. Atalla, Dawon KahngBell Telephone Laboratories[2] [3]
NMOS
10,000 nm nmPMOSMohamed M. Atalla, Dawon KahngBell Telephone Laboratories[4]
NMOS
8,000 nm150 nmNMOSChih-Tang Sah, Otto Leistiko, A.S. GroveFairchild Semiconductor[5]
5,000 nm170 nmPMOS
1,000 nmPMOSRobert H. Dennard, Fritz H. Gaensslen, Hwa-Nien YuIBM T.J. Watson Research Center[6] [7] [8]
19737,500 nmNMOSSohichi SuzukiNEC[9] [10]
6,000 nmPMOSToshiba[11] [12]
1,000 nm nmNMOSRobert H. Dennard, Fritz H. Gaensslen, Hwa-Nien YuIBM T.J. Watson Research Center[13]
500 nm
1,500 nm nmNMOSRyoichi Hori, Hiroo Masuda, Osamu MinatoHitachi[14]
3,000 nmNMOSIntel[15]
1,000 nm25 nmNMOSWilliam R. Hunter, L. M. Ephrath, Alice CramerIBM T.J. Watson Research Center[16]
100 nm5 nmNMOSToshio Kobayashi, Seiji Horiguchi, K. KiuchiNippon Telegraph and Telephone[17]
150 nm2.5 nmNMOSToshio Kobayashi, Seiji Horiguchi, M. Miyake, M. OdaNippon Telegraph and Telephone[18]
75 nmNMOSStephen Y. Chou, Henry I. Smith, Dimitri A. AntoniadisMIT[19]
60 nmNMOSStephen Y. Chou, Henry I. Smith, Dimitri A. AntoniadisMIT[20]
200 nm3.5 nmPMOSToshio Kobayashi, M. Miyake, K. DeguchiNippon Telegraph and Telephone[21]
40 nmNMOSMizuki Ono, Masanobu Saito, Takashi YoshitomiToshiba[22]
16 nmPMOSHisao Kawaura, Toshitsugu Sakamoto, Toshio BabaNEC[23]
50 nm1.3 nmNMOSKhaled Z. Ahmed, Effiong E. Ibok, Miryeong SongAdvanced Micro Devices (AMD)[24] [25]
6 nmPMOSBruce Doris, Omer Dokumaci, Meikei IeongIBM[26] [27] [28]
3 nmPMOSHitoshi Wakabayashi, Shigeharu YamagamiNEC[29]
NMOS

CMOS (single-gate)

Channel length! data-sort-type="number"
Oxide thicknessResearcher(s)Organization
Chih-Tang Sah, Frank WanlassFairchild Semiconductor[30] [31]
196820,000 nm nmRCA Laboratories[32]
197010,000 nm nmRCA Laboratories
2,000 nmA. Aitken, R.G. Poulsen, A.T.P. MacArthur, J.J. WhiteMitel Semiconductor[33]
3,000 nmToshiaki Masuhara, Osamu Minato, Toshio Sasaki, Yoshio SakaiHitachi Central Research Laboratory[34] [35] [36]
1,200 nm nmR.J.C. Chwang, M. Choi, D. Creek, S. Stern, P.H. PelleyIntel[37] [38]
900 nm nmTsuneo Mano, J. Yamada, Junichi Inoue, S. NakajimaNippon Telegraph and Telephone (NTT)[39]
1,000 nm nmG.J. Hu, Yuan Taur, Robert H. Dennard, Chung-Yu TingIBM T.J. Watson Research Center[40]
800 nm17 nmT. Sumi, Tsuneo Taniguchi, Mikio Kishimoto, Hiroshige HiranoMatsushita[41]
700 nm12 nmTsuneo Mano, J. Yamada, Junichi Inoue, S. NakajimaNippon Telegraph and Telephone (NTT)[42]
500 nm12.5 nmHussein I. Hanafi, Robert H. Dennard, Yuan Taur, Nadim F. HaddadIBM T.J. Watson Research Center[43]
250 nmNaoki Kasai, Nobuhiro Endo, Hiroshi KitajimaNEC[44]
400 nm nmM. Inoue, H. Kotani, T. Yamada, Hiroyuki YamauchiMatsushita[45]
100 nmGhavam G. Shahidi, Bijan Davari, Yuan Taur, James D. WarnockIBM T.J. Watson Research Center[46]
1993350 nmSony[47]
1996150 nmMitsubishi Electric
1998180 nmTSMC[48]
5 nmHitoshi Wakabayashi, Shigeharu Yamagami, Nobuyuki IkezawaNEC[49]

Multi-gate MOSFET (MuGFET)

Channel length!MuGFET type! Researcher(s)! Organization!
DGMOSToshihiro Sekigawa, Yutaka HayashiElectrotechnical Laboratory (ETL)[50]
19872,000 nmDGMOSToshihiro SekigawaElectrotechnical Laboratory (ETL)[51]
250 nmDGMOSBijan Davari, Wen-Hsing Chang, Matthew R. Wordeman, C.S. OhIBM T.J. Watson Research Center[52] [53]
180 nm
GAAFETFujio Masuoka, Hiroshi Takato, Kazumasa Sunouchi, N. OkabeToshiba[54] [55] [56]
200 nmFinFETDigh Hisamoto, Toru Kaga, Yoshifumi Kawamoto, Eiji TakedaHitachi Central Research Laboratory[57] [58] [59]
17 nmFinFETDigh Hisamoto, Chenming Hu, Tsu-Jae King Liu, Jeffrey BokorUniversity of California (Berkeley)[60] [61]
200115 nmFinFETChenming Hu, Yang-Kyu Choi, Nick Lindert, Tsu-Jae King LiuUniversity of California (Berkeley)[62]
10 nmFinFETShibly Ahmed, Scott Bell, Cyrus Tabery, Jeffrey BokorUniversity of California (Berkeley)[63]
3 nmGAAFETHyunjin Lee, Yang-kyu Choi, Lee-Eun Yu, Seong-Wan RyuKAIST[64]

Other types of MOSFET

Channel
length
(nm)! data-sort-type="number"
Oxide
thickness
(nm)
MOSFET
type
Researcher(s)Organization
TFTPaul K. WeimerRCA Laboratories[65] [66]
GaAsH. Becke, R. Hall, J. WhiteRCA Laboratories[67]
100,000TFTT.P. Brody, H.E. KunigWestinghouse Electric[68] [69]
FGMOSDawon Kahng, Simon Min SzeBell Telephone Laboratories[70]
MNOSH.A. Richard Wegener, A.J. Lincoln, H.C. PaoSperry Corporation[71]
BiMOSHung-Chang Lin, Ramachandra R. IyerWestinghouse Electric[72] [73]
BiCMOSHung-Chang Lin, Ramachandra R. Iyer, C.T. HoWestinghouse Electric[74]
1969VMOSHitachi[75] [76]
DMOSY. Tarui, Y. Hayashi, Toshihiro SekigawaElectrotechnical Laboratory (ETL)[77] [78]
ISFETPiet BergveldUniversity of Twente[79] [80]
1000DMOSY. Tarui, Y. Hayashi, Toshihiro SekigawaElectrotechnical Laboratory (ETL)[81]
1977VDMOSJohn Louis MollHP Labs
LDMOSHitachi[82]
IGBTBantval Jayant Baliga, Margaret LazeriGeneral Electric[83]
2000BiCMOSH. Higuchi, Goro Kitsukawa, Takahide Ikeda, Y. NishioHitachi[84]
300K. Deguchi, Kazuhiko Komatsu, M. Miyake, H. NamatsuNippon Telegraph and Telephone[85]
1000BiCMOSH. Momose, Hideki Shibata, S. Saitoh, Jun-ichi MiyamotoToshiba[86]
908.3Han-Sheng Lee, L.C. PuzioGeneral Motors[87]
60Ghavam G. Shahidi, Dimitri A. Antoniadis, Henry I. SmithMIT[88]
10Bijan Davari, Chung-Yu Ting, Kie Y. Ahn, S. BasavaiahIBM T.J. Watson Research Center[89]
800BiCMOSRobert H. Havemann, R. E. Eklund, Hiep V. TranTexas Instruments[90]
30EJ-MOSFETHisao Kawaura, Toshitsugu Sakamoto, Toshio BabaNEC[91]
199832NEC
19998
8EJ-MOSFETHisao Kawaura, Toshitsugu Sakamoto, Toshio BabaNEC[92]

Commercial products using micro-scale MOSFETs

Products featuring 20 μm manufacturing process

Products featuring 10 μm manufacturing process

See main article: 10 μm process.

Products featuring 8 μm manufacturing process

Products featuring 6 μm manufacturing process

See main article: 6 μm process.

Products featuring 3 μm manufacturing process

See main article: 3 μm process.

Products featuring 1.5 μm manufacturing process

See main article: 1.5 μm process.

Products featuring 1 μm manufacturing process

See main article: 1 μm process.

  • NTT's DRAM memory chips, including its 64kb chip in 1979 and 256kb chip in 1980.[37]
  • NEC's 1Mb DRAM memory chip in 1984.[47]
  • Intel 80386 CPU launched in 1985.

Products featuring 800 nm manufacturing process

See main article: 800 nm process.

Products featuring 600 nm manufacturing process

See main article: 600 nm process.

Products featuring 350 nm manufacturing process

See main article: 350 nm process.

Products featuring 250 nm manufacturing process

See main article: 250 nm process.

  • Hitachi's 16Mb SRAM memory chip in 1993.[47]
  • Hitachi and NEC introduced 256Mb DRAM memory chips manufactured with this process in 1993, followed by Matsushita, Mitsubishi Electric and Oki in 1994.[47]
  • NEC's 1Gb DRAM memory chip in 1995.[47]
  • Hitachi's 128Mb NAND flash memory chip in 1996.[47]
  • DEC Alpha 21264A, which was made commercially available in 1999.
  • AMD K6-2 Chomper and Chomper Extended. Chomper was released on May 28, 1998.
  • AMD K6-III "Sharptooth" used 250 nm.
  • Mobile Pentium MMX Tillamook, released in August 1997.
  • Pentium II Deschutes.
  • Dreamcast console's Hitachi SH-4 CPU and PowerVR2 GPU, released in 1998.
  • Pentium III Katmai.
  • Initial PlayStation 2's Emotion Engine CPU.

Processors using 180 nm manufacturing technology

See main article: 180 nm process.

  • Intel Coppermine E- October 1999
  • Sony PlayStation 2 console's Emotion Engine and Graphics Synthesizer – March 2000[100]
  • ATI Radeon R100 and RV100 Radeon 7000 – 2000
  • AMD Athlon Thunderbird – June 2000
  • Intel Celeron (Willamette) – May 2002
  • Motorola PowerPC 7445 and 7455 (Apollo 6) – January 2002

Processors using 130 nm manufacturing technology

See main article: 130 nm process.

Commercial products using nano-scale MOSFETs

See also: Nanoelectronics and Nanocircuitry.

Chips using 90 nm manufacturing technology

See main article: 90 nm process.

  • Sony–Toshiba Emotion Engine+Graphics Synthesizer (PlayStation 2) – 2003[100]
  • IBM PowerPC G5 970FX – 2004
  • Elpida Memory's 90 nm DDR2 SDRAM process – 2005
  • IBM PowerPC G5 970MP – 2005
  • IBM PowerPC G5 970GX – 2005
  • IBM Waternoose Xbox 360 Processor – 2005
  • IBM–Sony–Toshiba Cell processor – 2005
  • Intel Pentium 4 Prescott – 2004-02
  • Intel Celeron D Prescott-256 – 2004-05
  • Intel Pentium M Dothan – 2004-05
  • Intel Celeron M Dothan-1024 – 2004-08
  • Intel Xeon Nocona, Irwindale, Cranford, Potomac, Paxville – 2004-06
  • Intel Pentium D Smithfield – 2005-05
  • AMD Athlon 64 Winchester, Venice, San Diego, Orleans – 2004-10
  • AMD Athlon 64 X2 Manchester, Toledo, Windsor – 2005-05
  • AMD Sempron Palermo and Manila – 2004-08
  • AMD Turion 64 Lancaster and Richmond – 2005-03
  • AMD Turion 64 X2 Taylor and Trinidad – 2006-05
  • AMD Opteron Venus, Troy, and Athens – 2005-08
  • AMD Dual-core Opteron Denmark, Italy, Egypt, Santa Ana, and Santa Rosa
  • VIA C7 – 2005-05
  • Loongson (Godson) 2Е STLS2E02 – 2007-04
  • Loongson (Godson) 2F STLS2F02 – 2008-07
  • MCST-4R – 2010-12
  • Elbrus-2C+ – 2011-11

Processors using 65 nm manufacturing technology

See main article: 65 nm process.

  • Sony–Toshiba EE+GS (PStwo)[102] – 2005
  • Intel Pentium 4 (Cedar Mill) – 2006-01-16
  • Intel Pentium D 900-series – 2006-01-16
  • Intel Celeron D (Cedar Mill cores) – 2006-05-28
  • Intel Core – 2006-01-05
  • Intel Core 2 – 2006-07-27
  • Intel Xeon (Sossaman) – 2006-03-14
  • AMD Athlon 64 series (starting from Lima) – 2007-02-20
  • AMD Turion 64 X2 series (starting from Tyler) – 2007-05-07
  • AMD Phenom series
  • IBM's Cell ProcessorPlayStation 3 – 2007-11-17
  • IBM's z10
  • Microsoft Xbox 360 "Falcon" CPU – 2007–09
  • Microsoft Xbox 360 "Opus" CPU – 2008
  • Microsoft Xbox 360 "Jasper" CPU – 2008–10
  • Microsoft Xbox 360 "Jasper" GPU – 2008–10
  • Sun UltraSPARC T2 – 2007–10
  • AMD Turion Ultra – 2008-06[103]
  • TI OMAP 3 Family[104] – 2008-02
  • VIA Nano – 2008-05
  • Loongson – 2009
  • NVIDIA GeForce 8800GT GPU – 2007

Processors using 45 nm technology

See main article: 45 nm process.

Chips using 32 nm technology

See main article: 32 nm process.

  • Toshiba produced commercial 32Gb NAND flash memory chips with the 32nm process in 2009.[106]
  • Intel Core i3 and i5 processors, released in January 2010[107]
  • Intel 6-core processor, codenamed Gulftown[108]
  • Intel i7-970, was released in late July 2010, priced at approximately US$900
  • AMD FX Series processors, codenamed Zambezi and based on AMD's Bulldozer architecture, were released in October 2011. The technology used a 32 nm SOI process, two CPU cores per module, and up to four modules, ranging from a quad-core design costing approximately US$130 to a $280 eight-core design.
  • Ambarella Inc. announced the availability of the A7L system-on-a-chip circuit for digital still cameras, providing 1080p60 high-definition video capabilities in September 2011[109]

Chips using 24–28 nm technology

  • SK Hynix announced that it could produce a 26 nm flash chip with 64 Gb capacity; Intel Corp. and Micron Technology had by then already developed the technology themselves. Announced in 2010.[110]
  • Toshiba announced that it was shipping 24 nm flash memory NAND devices on August 31, 2010.[111]
  • In 2016 MCST's 28 nm processor Elbrus-8S went for serial production.[112] [113]

Chips using 22 nm technology

See main article: 22 nm process.

  • Intel Core i7 and Intel Core i5 processors based on Intel's Ivy Bridge 22 nm technology for series 7 chip-sets went on sale worldwide on April 23, 2012.[114]

Chips using 20 nm technology

Chips using 16 nm technology

Chips using 14 nm technology

See main article: 14 nm process.

Chips using 10 nm technology

See main article: 10 nm process.

Chips using 7 nm technology

See main article: 7 nm process.

  • TSMC began risk production of 256 Mbit SRAM memory chips using a 7 nm process in April 2017.[123]
  • Samsung and TSMC began mass production of 7 nm devices in 2018.[124]
  • Apple A12 and Huawei Kirin 980 mobile processors, both released in 2018, use 7 nm chips manufactured by TSMC.[125]
  • AMD began using TSMC 7 nm starting with the Vega 20 GPU in November 2018,[126] with Zen 2-based CPUs and APUs from July 2019,[127] and for both PlayStation 5 [128] and Xbox Series X/S [129] consoles' APUs, released both in November 2020.

Chips using 5 nm technology

See main article: 5 nm process.

  • Samsung began production of 5 nm chips (5LPE) in late 2018.[130]
  • TSMC began production of 5 nm chips (CLN5FF) in April 2019.

Chips using 3 nm technology

See main article: 3 nm process.

See also

Notes and References

  1. Web site: Angstrom . . 2019-03-02.
  2. Book: Sze . Simon M. . Simon Sze . Semiconductor Devices: Physics and Technology . 2002 . . 0-471-33372-7 . 4 . 2nd .
  3. Atalla . Mohamed M. . Mohamed M. Atalla . Kahng . Dawon . Dawon Kahng . Silicon–silicon dioxide field induced surface devices . IRE-AIEE Solid State Device Research Conference . . June 1960.
  4. Book: Voinigescu . Sorin . High-Frequency Integrated Circuits . 2013 . . 9780521873024 . 164 .
  5. Sah . Chih-Tang . Chih-Tang Sah . Leistiko . Otto . Grove . A. S. . Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces . . May 1965 . 12 . 5 . 248–254 . 10.1109/T-ED.1965.15489 . 1965ITED...12..248L .
  6. Dennard . Robert H. . Robert H. Dennard . Gaensslen . Fritz H. . Yu . Hwa-Nien . Kuhn . L. . 1972 International Electron Devices Meeting . Design of micron MOS switching devices . 1972 International Electron Devices Meeting . December 1972 . 168–170 . 10.1109/IEDM.1972.249198.
  7. Hori . Ryoichi . Masuda . Hiroo . Minato . Osamu . Nishimatsu . Shigeru . Sato . Kikuji . Kubo . Masaharu . Short Channel MOS-IC Based on Accurate Two Dimensional Device Design . . September 1975 . 15 . S1 . 193 . 10.7567/JJAPS.15S1.193 . 1347-4065. free .
  8. Critchlow . D. L. . Recollections on MOSFET Scaling . IEEE Solid-State Circuits Society Newsletter . 2007 . 12 . 1 . 19–22 . 10.1109/N-SSC.2007.4785536 . free.
  9. Web site: 1970s: Development and evolution of microprocessors . Semiconductor History Museum of Japan . 27 June 2019.
  10. Web site: NEC 751 (uCOM-4) . The Antique Chip Collector's Page . 2010-06-11 . dead . https://web.archive.org/web/20110525202756/http://www.antiquetech.com/chips/NEC751.htm . 2011-05-25.
  11. Web site: 1973: 12-bit engine-control microprocessor (Toshiba) . Semiconductor History Museum of Japan . 27 June 2019.
  12. Book: Belzer . Jack . Holzman . Albert G. . Kent . Allen . Encyclopedia of Computer Science and Technology: Volume 10 – Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification . 1978 . . 9780824722609 . 402 .
  13. Dennard . Robert H. . Robert H. Dennard . Gaensslen . F. H. . Yu . Hwa-Nien . Rideout . V. L. . Bassous . E. . LeBlanc . A. R. . Design of ion-implanted MOSFET's with very small physical dimensions . . October 1974 . 9 . 5 . 256–268 . 10.1109/JSSC.1974.1050511 . 1974IJSSC...9..256D . 10.1.1.334.2417 . 283984 .
  14. Kubo . Masaharu . Hori . Ryoichi . Minato . Osamu . Sato . Kikuji . 1976 IEEE International Solid-State Circuits Conference. Digest of Technical Papers . A threshold voltage controlling circuit for short channel MOS integrated circuits . 1976 IEEE International Solid-State Circuits Conference. Digest of Technical Papers . February 1976 . XIX . 54–55 . 10.1109/ISSCC.1976.1155515. 21048622 .
  15. Web site: Intel Microprocessor Quick Reference Guide. Intel. 27 June 2019.
  16. Hunter . William R. . Ephrath . L. M. . Cramer . Alice . Grobman . W. D. . Osburn . C. M. . Crowder . B. L. . Luhn . H. E. . 1 /spl mu/m MOSFET VLSI technology. V. A single-level polysilicon technology using electron-beam lithography . . April 1979 . 14 . 2 . 275–281 . 10.1109/JSSC.1979.1051174. 26389509 .
  17. Book: Kobayashi . Toshio . Horiguchi . Seiji . Kiuchi . K. . 1984 International Electron Devices Meeting . Deep-submicron MOSFET characteristics with 5 nm gate oxide . December 1984 . 414–417 . 10.1109/IEDM.1984.190738. 46729489 .
  18. Book: Kobayashi . Toshio . Horiguchi . Seiji . Miyake . M. . Oda . M. . Kiuchi . K. . 1985 International Electron Devices Meeting . Extremely high transconductance (Above 500 mS/Mm) MOSFET with 2.5 nm gate oxide . December 1985 . 761–763 . 10.1109/IEDM.1985.191088. 22309664 .
  19. Chou . Stephen Y. . Antoniadis . Dimitri A. . Smith . Henry I. . Observation of electron velocity overshoot in sub-100-nm-channel MOSFET's in Silicon . . December 1985 . 6 . 12 . 665–667 . 10.1109/EDL.1985.26267. 1985IEDL....6..665C. 28493431 .
  20. Chou . Stephen Y. . Smith . Henry I. . Antoniadis . Dimitri A. . Sub-100-nm channel-length transistors fabricated using x-ray lithography . Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena . January 1986 . 4 . 1 . 253–255 . 10.1116/1.583451 . 1986JVSTB...4..253C . 0734-211X.
  21. Kobayashi . Toshio . Miyake . M.. Deguchi . K. . Kimizuka . M. . Horiguchi . Seiji . Kiuchi . K. . Subhalf-micrometer p-channel MOSFET's with 3.5-nm gate Oxide fabricated using X-ray lithography . . 1987 . 8 . 6 . 266–268 . 10.1109/EDL.1987.26625. 1987IEDL....8..266M. 38828156 .
  22. Book: Ono . Mizuki . Saito . Masanobu . Yoshitomi . Takashi . Fiegna . Claudio . Ohguro . Tatsuya . Iwai . Hiroshi . Proceedings of IEEE International Electron Devices Meeting . Sub-50 nm gate length n-MOSFETs with 10 nm phosphorus source and drain junctions . December 1993 . 119–122 . 10.1109/IEDM.1993.347385. 0-7803-1450-6. 114633315 .
  23. Kawaura . Hisao . Sakamoto . Toshitsugu . Baba . Toshio . Ochiai . Yukinori . Fujita . Jun'ichi . Matsui . Shinji . Sone . Jun'ichi . Proposal of Pseudo Source and Drain MOSFETs for Evaluating 10-nm Gate MOSFETs . . 1997 . 36 . 3S . 1569 . 10.1143/JJAP.36.1569 . 1997JaJAP..36.1569K . 250846435 . en . 1347-4065.
  24. Book: Ahmed . Khaled Z. . Ibok . Effiong E. . Song . Miryeong . Yeap . Geoffrey . Xiang . Qi . Bang . David S. . Lin . Ming-Ren . 1998 Symposium on VLSI Technology Digest of Technical Papers (Cat. No. 98CH36216) . Performance and reliability of sub-100 nm MOSFETs with ultra thin direct tunneling gate oxides . 1998 . 160–161 . 10.1109/VLSIT.1998.689240. 0-7803-4770-6. 109823217 .
  25. Book: Ahmed . Khaled Z. . Ibok . Effiong E. . Song . Miryeong . Yeap . Geoffrey . Xiang . Qi . Bang . David S. . Lin . Ming-Ren . 56th Annual Device Research Conference Digest (Cat. No. 98TH8373) . Sub-100 nm nMOSFETs with direct tunneling thermal, nitrous and nitric oxides . 1998 . 10–11 . 10.1109/DRC.1998.731099. 0-7803-4995-4. 1849364 .
  26. Book: Doris . Bruce B. . Dokumaci . Omer H. . Ieong . Meikei K. . Mocuta . Anda . Zhang . Ying . Kanarsky . Thomas S. . Roy . R. A. . Digest. International Electron Devices Meeting . Extreme scaling with ultra-thin Si channel MOSFETs . December 2002 . 267–270 . 10.1109/IEDM.2002.1175829. 0-7803-7462-2. 10151651 .
  27. Book: Schwierz . Frank . Wong . Hei . Liou . Juin J. . Nanometer CMOS . 2010 . Pan Stanford Publishing . 9789814241083 . 17 . en.
  28. Web site: IBM claims world's smallest silicon transistor – TheINQUIRER. https://web.archive.org/web/20110531040504/http://www.theinquirer.net/inquirer/news/1034321/ibm-claims-worlds-smallest-silicon-transistor. unfit. May 31, 2011. Theinquirer.net. 7 December 2017. 2002-12-09.
  29. Book: Wakabayashi . Hitoshi . Yamagami . Shigeharu . Ikezawa . Nobuyuki . Ogura . Atsushi . Narihiro . Mitsuru . Arai . K. . Ochiai . Y. . Takeuchi . K. . Yamamoto . T. . Mogami . T. . IEEE International Electron Devices Meeting 2003 . Sub-10-nm planar-bulk-CMOS devices using lateral junction control . December 2003 . 20.7.1–20.7.3 . 10.1109/IEDM.2003.1269446. 0-7803-7872-5. 2100267 .
  30. Web site: 1963: Complementary MOS Circuit Configuration is Invented . . 6 July 2019.
  31. Sah . Chih-Tang . Chih-Tang Sah . Wanlass . Frank . Frank Wanlass . Nanowatt logic using field-effect metal–oxide semiconductor triodes . 1963 IEEE International Solid-State Circuits Conference. Digest of Technical Papers . February 1963 . VI . 32–33 . 10.1109/ISSCC.1963.1157450.
  32. Book: Lojek . Bo . History of Semiconductor Engineering . 2007 . . 9783540342588 . 330 .
  33. Aitken . A. . Poulsen . R. G. . MacArthur . A. T. P. . White . J. J. . 1976 International Electron Devices Meeting . A fully plasma etched-ion implanted CMOS process . 1976 International Electron Devices Meeting . December 1976 . 209–213 . 10.1109/IEDM.1976.189021. 24526762 .
  34. Web site: 1978: Double-well fast CMOS SRAM (Hitachi) . Semiconductor History Museum of Japan . 5 July 2019.
  35. Masuhara . Toshiaki . Minato . Osamu . Sasaki . Toshio . Sakai . Yoshio . Kubo . Masaharu . Yasui . Tokumasa . 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers . A high-speed, low-power Hi-CMOS 4K static RAM . 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers . February 1978 . XXI . 110–111 . 10.1109/ISSCC.1978.1155749. 30753823 .
  36. Masuhara . Toshiaki . Minato . Osamu . Sakai . Yoshi . Sasaki . Toshio . Kubo . Masaharu . Yasui . Tokumasa . Short Channel Hi-CMOS Device and Circuits . ESSCIRC 78: 4th European Solid State Circuits Conference – Digest of Technical Papers . September 1978 . 131–132 .
  37. Web site: Gealow . Jeffrey Carl . Impact of Processing Technology on DRAM Sense Amplifier Design . . . 10 August 1990 . 149–166 . 25 June 2019.
  38. Book: Chwang . R. J. C. . Choi . M. . Creek . D. . Stern . S. . Pelley . P. H. . Schutz . Joseph D. . Bohr . M. T. . Warkentin . P. A. . Yu . K. . 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers . A 70ns high density CMOS DRAM . February 1983 . XXVI . 56–57 . 10.1109/ISSCC.1983.1156456. 29882862 .
  39. Book: Mano . Tsuneo . Yamada . J. . Inoue . Junichi . Nakajima . S. . 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers . Submicron VLSI memory circuits . February 1983 . XXVI . 234–235 . 10.1109/ISSCC.1983.1156549. 42018248 .
  40. Book: Hu . G. J. . Taur . Yuan . Dennard . Robert H. . Robert H. Dennard . Terman . L. M. . Ting . Chung-Yu . 1983 International Electron Devices Meeting . A self-aligned 1-μm CMOS technology for VLSI . December 1983 . 739–741 . 10.1109/IEDM.1983.190615. 20070619 .
  41. Book: Sumi . T. . Taniguchi . Tsuneo . Kishimoto . Mikio . Hirano . Hiroshige . Kuriyama . H. . Nishimoto . T. . Oishi . H. . Tetakawa . S. . 1987 IEEE International Solid-State Circuits Conference. Digest of Technical Papers . A 60ns 4Mb DRAM in a 300mil DIP . 1987 . XXX . 282–283 . 10.1109/ISSCC.1987.1157106. 60783996 .
  42. Book: Mano . Tsuneo . Yamada . J. . Inoue . Junichi . Nakajima . S. . Matsumura . Toshiro . Minegishi . K. . Miura . K. . Matsuda . T. . Hashimoto . C. . Namatsu . H. . 1987 IEEE International Solid-State Circuits Conference. Digest of Technical Papers . Circuit technologies for 16Mb DRAMs . 1987 . XXX . 22–23 . 10.1109/ISSCC.1987.1157158. 60984466 .
  43. Hanafi . Hussein I. . Dennard . Robert H. . Robert H. Dennard . Taur . Yuan . Haddad . Nadim F. . Sun . J. Y. C. . Rodriguez . M. D. . 0.5 μm CMOS Device Design and Characterization . ESSDERC '87: 17th European Solid State Device Research Conference . September 1987 . 91–94 .
  44. Book: Kasai . Naoki . Endo . Nobuhiro . Kitajima . Hiroshi . 1987 International Electron Devices Meeting . 0.25 μm CMOS technology using P+polysilicon gate PMOSFET . December 1987 . 367–370 . 10.1109/IEDM.1987.191433. 9203005 .
  45. Book: Inoue . M. . Kotani . H. . Yamada . T. . Yamauchi . Hiroyuki . Fujiwara . A. . Matsushima . J. . Akamatsu . Hironori . Fukumoto . M. . Kubota . M. . Nakao . I. . Aoi . 1988 IEEE International Solid-State Circuits Conference, 1988 ISSCC. Digest of Technical Papers . A 16mb Dram with an Open Bit-Line Architecture . 1988 . 246– . 10.1109/ISSCC.1988.663712. 62034618 .
  46. Shahidi . Ghavam G. . Ghavam Shahidi . Davari . Bijan . Bijan Davari . Taur . Yuan . Warnock . James D. . Wordeman . Matthew R. . McFarland . P. A. . Mader . S. R. . Rodriguez . M. D. . Fabrication of CMOS on ultrathin SOI obtained by epitaxial lateral overgrowth and chemical-mechanical polishing . International Technical Digest on Electron Devices . December 1990 . 587–590 . 10.1109/IEDM.1990.237130. 114249312 .
  47. Web site: Memory. STOL (Semiconductor Technology Online). 25 June 2019. 2 November 2023. https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html. dead.
  48. Web site: 0.18-micron Technology . . 30 June 2019.
  49. Web site: NEC test-produces world's smallest transistor. Thefreelibrary.com. 7 December 2017.
  50. Sekigawa . Toshihiro . Hayashi . Yutaka . Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate . Solid-State Electronics . August 1984 . 27 . 8 . 827–828 . 10.1016/0038-1101(84)90036-4 . 1984SSEle..27..827S . 0038-1101.
  51. Hanpei . Koike . Tadashi . Nakagawa . Toshiro . Sekigawa . E. . Suzuki . Toshiyuki . Tsutsumi . Primary Consideration on Compact Modeling of DG MOSFETs with Four-terminal Operation Mode . TechConnect Briefs . 23 February 2003 . 2 . 2003 . 330–333 . 189033174 . https://web.archive.org/web/20190926013047/https://pdfs.semanticscholar.org/1a31/399021f62ae3d00dd6dd42d2bc7483598d26.pdf . dead . 26 September 2019 .
  52. Book: Davari . Bijan . Bijan Davari . Chang . Wen-Hsing . Wordeman . Matthew R. . Oh . C. S. . Taur . Yuan . Petrillo . Karen E. . Rodriguez . M. D. . Technical Digest., International Electron Devices Meeting . A high performance 0.25 mu m CMOS technology . December 1988 . 56–59 . 10.1109/IEDM.1988.32749. 114078857 .
  53. Book: Davari . Bijan . Bijan Davari . Wong . C. Y. . Sun . Jack Yuan-Chen . Taur . Yuan . Technical Digest., International Electron Devices Meeting . Doping of n/Sup +/ And p/Sup +/ Polysilicon in a dual-gate CMOS process . December 1988 . 238–241 . 10.1109/IEDM.1988.32800. 113918637 .
  54. Book: Masuoka . Fujio . Fujio Masuoka . Takato . Hiroshi . Sunouchi . Kazumasa . Okabe . N. . Nitayama . Akihiro . Hieda . K. . Horiguchi . Fumio . Technical Digest., International Electron Devices Meeting . High performance CMOS surrounding gate transistor (SGT) for ultra high density LSIs . December 1988 . 222–225 . 10.1109/IEDM.1988.32796. 114148274 .
  55. Book: Brozek . Tomasz . Micro- and Nanoelectronics: Emerging Device Challenges and Solutions . 2017 . . 9781351831345 . 117 .
  56. Book: Ishikawa . Fumitaro . Buyanova . Irina . Novel Compound Semiconductor Nanowires: Materials, Devices, and Applications . 2017 . . 9781315340722 . 457 .
  57. Book: Colinge . J.P. . FinFETs and Other Multi-Gate Transistors . 2008 . Springer Science & Business Media . 9780387717517 . 11 .
  58. Book: Hisamoto . Digh . Kaga . Toru . Kawamoto . Yoshifumi . Takeda . Eiji . International Technical Digest on Electron Devices Meeting . A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET . December 1989 . 833–836 . 10.1109/IEDM.1989.74182. 114072236 .
  59. Web site: IEEE Andrew S. Grove Award Recipients . https://web.archive.org/web/20180909112404/https://www.ieee.org/about/awards/bios/grove-recipients.html . dead . September 9, 2018 . . . 4 July 2019.
  60. Web site: Tsu-Jae King . Liu . Tsu-Jae King Liu . FinFET: History, Fundamentals and Future . . Symposium on VLSI Technology Short Course . June 11, 2012 . 9 July 2019 . https://web.archive.org/web/20160528220227/http://people.eecs.berkeley.edu/~tking/presentations/KingLiu_2012VLSI-Tshortcourse . 28 May 2016 . live.
  61. Book: Hisamoto . Digh . Hu . Chenming . Liu . Tsu-Jae King . Bokor . Jeffrey . Lee . Wen-Chin . Kedzierski . Jakub . Anderson . Erik . Takeuchi . Hideki . Asano . Kazuya . International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217) . A folded-channel MOSFET for deep-sub-tenth micron era . December 1998 . 1032–1034 . 10.1109/IEDM.1998.746531. 0-7803-4774-9. 37774589 .
  62. Book: Hu . Chenming . Chenming Hu . Choi . Yang-Kyu . Lindert . N. . Xuan . P. . Tang . S. . Ha . D. . Anderson . E. . Bokor . J. . Tsu-Jae King . Liu . International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) . Sub-20 nm CMOS FinFET technologies . December 2001 . 19.1.1–19.1.4 . 10.1109/IEDM.2001.979526. 0-7803-7050-3. 8908553 .
  63. Book: Ahmed . Shibly . Bell . Scott . Tabery . Cyrus . Bokor . Jeffrey . Kyser . David . Hu . Chenming . Liu . Tsu-Jae King . Yu . Bin . Chang . Leland . Digest. International Electron Devices Meeting . FinFET scaling to 10 nm gate length . December 2002 . 251–254 . 10.1109/IEDM.2002.1175825 . 10.1.1.136.3757 . https://www.eecs.wsu.edu/~osman/EE597/FINFET/finfet4.pdf . 0-7803-7462-2 . 7106946 . 2019-10-11 . 2020-05-27 . https://web.archive.org/web/20200527205136/https://www.eecs.wsu.edu/~osman/EE597/FINFET/finfet4.pdf . dead .
  64. Book: Lee . Hyunjin . Choi . Yang-Kyu . Yu . Lee-Eun . Ryu . Seong-Wan . Han . Jin-Woo . Jeon . K. . Jang . D.Y. . Kim . Kuk-Hwan . Lee . Ju-Hyun . 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers . Sub-5nm All-Around Gate FinFET for Ultimate Scaling . June 2006 . 58–59 . 10.1109/VLSIT.2006.1705215 . etal. 978-1-4244-0005-8 . 10203/698 . 26482358 . free.
  65. Weimer . Paul K. . Paul K. Weimer . The TFT A New Thin-Film Transistor . . June 1962 . 50 . 6 . 1462–1469 . 10.1109/JRPROC.1962.288190 . 51650159 . 0096-8390.
  66. Kuo . Yue . Thin Film Transistor Technology—Past, Present, and Future . The Electrochemical Society Interface . 1 January 2013 . 22 . 1 . 55–61 . 10.1149/2.F06131if . 2013ECSIn..22a..55K . 1064-8208. free .
  67. Book: Ye . Peide D. . Xuan . Yi . Wu . Yanqing . Xu . Min . Atomic-Layer Deposited High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model . Oktyabrsky . Serge . Ye . Peide . Fundamentals of III-V Semiconductor MOSFETs . 2010 . . 173–194 . 10.1007/978-1-4419-1547-4_7 . 978-1-4419-1547-4 . https://books.google.com/books?id=sk2SrZH3xEcC&pg=PA173.
  68. Brody . T. P. . Kunig . H. E. . A HIGH-GAIN InAs THIN-FILM TRANSISTOR . Applied Physics Letters . October 1966 . 9 . 7 . 259–260 . 10.1063/1.1754740 . 1966ApPhL...9..259B . 0003-6951. free .
  69. Book: Woodall . Jerry M. . Jerry Woodall . Fundamentals of III-V Semiconductor MOSFETs . 2010 . . 9781441915474 . 2–3 .
  70. Kahng . Dawon . Dawon Kahng . Sze . Simon Min . Simon Sze . A floating gate and its application to memory devices . . July–August 1967 . 46 . 6 . 1288–1295 . 10.1002/j.1538-7305.1967.tb01738.x. 1967ITED...14Q.629K.
  71. Book: Wegener. H. A. R.. Lincoln. A. J.. Pao. H. C.. O'Connell. M. R.. Oleksiak. R. E.. Lawrence. H.. 1967 International Electron Devices Meeting . The variable threshold transistor, a new electrically-alterable, non-destructive read-only storage device . October 1967. 13. 70. 10.1109/IEDM.1967.187833.
  72. Lin . Hung Chang . Hung-Chang Lin . Iyer . Ramachandra R. . A Monolithic Mos-Bipolar Audio Amplifier . IEEE Transactions on Broadcast and Television Receivers . July 1968 . 14 . 2 . 80–86 . 10.1109/TBTR1.1968.4320132.
  73. Book: Alvarez . Antonio R. . Introduction to BiCMOS . BiCMOS Technology and Applications . 1990 . . 10.1007/978-1-4757-2029-7_1 . 9780792393849 . 1–20 (2).
  74. Lin . Hung Chang . Hung-Chang Lin . Iyer . Ramachandra R. . Ho . C. T. . 1968 International Electron Devices Meeting . Complementary MOS-bipolar structure . 1968 International Electron Devices Meeting . October 1968 . 22–24 . 10.1109/IEDM.1968.187949.
  75. Advances in Discrete Semiconductors March On . Power Electronics Technology . . 52–6 . 31 July 2019 . September 2005 . https://web.archive.org/web/20060322222716/http://powerelectronics.com/mag/509PET26.pdf . 22 March 2006 . live.
  76. Book: Oxner . E. S. . Fet Technology and Application . 1988 . . 9780824780500 . 18 .
  77. Book: Tarui . Y. . Hayashi . Y. . Sekigawa . Toshihiro . Extended Abstracts of the 1969 Conference on Solid State Devices . Diffusion Selfaligned MOST; A New Approach for High Speed Device . Proceedings of the 1st Conference on Solid State Devices . September 1969 . 10.7567/SSDM.1969.4-1 . 184290914 .
  78. McLintock . G. A. . Thomas . R. E. . 1972 International Electron Devices Meeting . Modelling of the double-diffused MOST's with self-aligned gates . 1972 International Electron Devices Meeting . December 1972 . 24–26 . 10.1109/IEDM.1972.249241.
  79. Bergveld . P. . Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements . . January 1970 . BME-17 . 1 . 70–71 . 10.1109/TBME.1970.4502688. 5441220.
  80. Chris Toumazou . Pantelis Georgiou . 40 years of ISFET technology: From neuronal sensing to DNA sequencing . . December 2011 . 10.1049/el.2011.3231 . 13 May 2016.
  81. Tarui . Y. . Hayashi . Y. . Sekigawa . Toshihiro . DSA enhancement – Depletion MOS IC . 1970 International Electron Devices Meeting . October 1970 . 110 . 10.1109/IEDM.1970.188299.
  82. Book: Duncan . Ben . High Performance Audio Power Amplifiers . 1996 . . 9780080508047 . 177–8, 406 .
  83. Book: Baliga . B. Jayant . The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor . 2015 . . 9781455731534 . xxviii, 5–12 .
  84. Book: Higuchi . H. . Kitsukawa . Goro . Ikeda . Takahide . Nishio . Y. . Sasaki . N. . Ogiue . Katsumi . 1984 International Electron Devices Meeting . Performance and structures of scaled-down bipolar devices merged with CMOSFETs . December 1984 . 694–697 . 10.1109/IEDM.1984.190818. 41295752 .
  85. Deguchi . K. . Komatsu . Kazuhiko . Miyake . M. . Namatsu . H. . Sekimoto . M. . Hirata . K. . Step-and-Repeat X-ray/Photo Hybrid Lithography for 0.3 μm Mos Devices . 1985 Symposium on VLSI Technology. Digest of Technical Papers . 1985 . 74–75 .
  86. Momose . H. . Shibata . Hideki . Saitoh . S. . Miyamoto . Jun-ichi . Kanzaki . K. . Kohyama . Susumu . 1.0-/spl mu/m n-Well CMOS/Bipolar Technology . . 1985 . 20 . 1 . 137–143 . 10.1109/JSSC.1985.1052286. 1985IJSSC..20..137M. 37353920 .
  87. Lee . Han-Sheng . Puzio . L.C. . The electrical properties of subquarter-micrometer gate-length MOSFET's . . November 1986 . 7 . 11 . 612–614 . 10.1109/EDL.1986.26492. 1986IEDL....7..612H. 35142126 .
  88. Book: Shahidi . Ghavam G. . Ghavam Shahidi . Antoniadis . Dimitri A. . Smith . Henry I. . 1986 International Electron Devices Meeting . Electron velocity overshoot at 300 K and 77 K in silicon MOSFETs with submicron channel lengths . December 1986 . 824–825 . 10.1109/IEDM.1986.191325. 27558025 .
  89. Davari . Bijan . Bijan Davari . Ting . Chung-Yu . Ahn . Kie Y. . Basavaiah . S. . Hu . Chao-Kun . Taur . Yuan . Wordeman . Matthew R. . Aboelfotoh . O. . Michael R. . Submicron Tungsten Gate MOSFET with 10 nm Gate Oxide . 1987 Symposium on VLSI Technology. Digest of Technical Papers . May 1987 . 61–62 .
  90. Book: Havemann . Robert H. . Eklund . R. E. . Tran . Hiep V. . Haken . R. A. . Scott . D. B. . Fung . P. K. . Ham . T. E. . Favreau . D. P. . Virkus . R. L. . 1987 International Electron Devices Meeting . An 0.8 μm 256K BiCMOS SRAM technology . December 1987 . 841–843 . 10.1109/IEDM.1987.191564. 40375699 .
  91. Book: Kawaura . Hisao . Sakamoto . Toshitsugu . Baba . Toshio . Ochiai . Yukinori . Fujita . Jun-ichi . Matsui . Shinji . Sone . J. . 1997 55th Annual Device Research Conference Digest . Transistor operations in 30-nm-gate-length EJ-MOSFETs . 1997 . 14–15 . 10.1109/DRC.1997.612456. 0-7803-3911-8. 38105606 .
  92. Kawaura . Hisao . Sakamoto . Toshitsugu . Baba . Toshio . Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors . . 12 June 2000 . 76 . 25 . 3810–3812 . 10.1063/1.126789 . 2000ApPhL..76.3810K . 0003-6951.
  93. Book: Lojek . Bo . History of Semiconductor Engineering . 2007 . . 9783540342588 . 362–363 . The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 μm, 2 memory cell size, a die size just under 10 mm2, and sold for around $21..
  94. Web site: Corder . Mike . Big Things in Small Packages . Pioneers' Progress with picoJava Technology . Sun Microelectronics . Spring 1999 . dead . https://web.archive.org/web/20060312110759/http://www.sun.com/microelectronics/picoJava/pioneers/vol3/licensee-jCan.html . 2006-03-12 . The first 6502 was fabricated with 8 micron technology, ran at one megahertz and had a maximum memory of 64k.. April 23, 2012.
  95. Web site: History of the Intel Microprocessor - Listoid . 2019-07-02 . 2015-04-27 . https://web.archive.org/web/20150427124729/http://www.listoid.com/list/142 . dead .
  96. Web site: Design case history: the Commodore 64 . IEEE Spectrum . 1 September 2019 . https://web.archive.org/web/20120513181613/http://spectrum.ieee.org/ns/pdfs/commodore64_mar1985.pdf. dead. May 13, 2012.
  97. Web site: Mueller . S . Microprocessors from 1971 to the Present . informIT . 2006-07-21 . 2012-05-11.
  98. Web site: Amiga Manual: Amiga 3000+ System Specification 1991. 17 July 1991 .
  99. Web site: Propeller I semiconductor process technology? Is it 350nm or 180nm? . 2012-09-10 . https://archive.today/20120710222806/http://forums.parallax.com/showthread.php?130327-Propeller-I-semiconductor-process-technology-Is-it-350nm-or-180nm . 2012-07-10 . dead.
  100. . 21 April 2003 . Emotion Engine and Graphics Synthesizer Used in the Core of PlayStation Become One Chip . 26 June 2019 . Sony.
  101. Krewell, Kevin (21 October 2002). "Fujitsu's SPARC64 V Is Real Deal". Microprocessor Report.
  102. Web site: ソニー、65nm対応の半導体設備を導入。3年間で2,000億円の投資. pc.watch.impress.co.jp. live. https://web.archive.org/web/20160813020249/http://pc.watch.impress.co.jp/docs/2003/0421/sony1.htm. 2016-08-13.
  103. http://www.tgdaily.com/content/view/31877/135/ TG Daily – AMD preps 65 nm Turion X2 processors
  104. http://focus.ti.com/pdfs/wtbu/ti_omap3family.pdf
  105. News: Panasonic starts to sell a New-generation UniPhier System LSI . 2 July 2019 . . October 10, 2007.
  106. News: Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology . 21 June 2019 . . 11 February 2009.
  107. http://www.informationweek.com/news/security/management/showArticle.jhtml?articleID=222200708 "Intel Debuts 32-NM Westmere Desktop Processors"
  108. Web site: Intel's 6-core 32nm processors arriving soon . Cangeloso . Sal . February 4, 2010 . Geek.com . November 11, 2011 . March 30, 2012 . https://web.archive.org/web/20120330104041/http://www.geek.com/articles/chips/intels-6-core-32nm-processors-arriving-soon-2010024/ . dead .
  109. News: Ambarella A7L Enables the Next Generation of Digital Still Cameras with 1080p60 Fluid Motion Video . September 26, 2011 . News release . November 11, 2011 . November 10, 2011 . https://web.archive.org/web/20111110054035/http://www.ambarella.com/news/26/74/Ambarella-A7L-Enables-the-Next-Generation-of-Digital-Still-Cameras-with-1080p60-Fluid-Motion-Video.html . dead .
  110. http://www.eetimes.com/electronics-news/4087542/Hynix-Samsung-push-NAND-flash-below-30-nm Article reporting Hynix 26 nm technology announcement
  111. http://www.toshiba.co.jp/about/press/2010_08/pr3101.htm?from=RSS_PRESS&uid=20100831-1112e Toshiba launches 24nm process NAND flash memory
  112. Web site: The Russian 28-nm processor "Elbrus-8C" will go into production in 2016. . 7 September 2020.
  113. Web site: Another domestic data storage system on "Elbrus" has been created . 25 August 2020 . 7 September 2020.
  114. http://semiaccurate.com/2012/04/23/intel-launches-ivy-bridge-amid-crushing-marketing-buzzwords/ Intel launches Ivy Bridge...
  115. Web site: History . . . 19 June 2019.
  116. Web site: 16/12nm Technology . . 30 June 2019.
  117. http://www.eetimes.com/document.asp?doc_id=1325057 EETimes Intel Rolls 14nm Broadwell in Vegas
  118. Web site: AMD Zen Architecture Overview. 2015-12-04. Tech4Gizmos. en-GB. 2019-05-01.
  119. News: Samsung Mass Producing 128Gb 3-bit MLC NAND Flash . 21 June 2019 . . 11 April 2013 . 21 June 2019 . https://web.archive.org/web/20190621175628/https://www.tomshardware.co.uk/NAND-128Gb-Mass-Production-3-bit-MLC,news-43458.html . dead .
  120. Web site: 10nm Technology . . 30 June 2019.
  121. Web site: Latest Samsung Galaxy Smartphones Mobile Phones .
  122. Web site: 10nm Rollout Marching Right Along. techinsights.com. www.techinsights.com. 2017-06-30. https://web.archive.org/web/20170803141307/http://www.techinsights.com/about-techinsights/overview/blog/10nm-rollout-marching-right-along/. 2017-08-03. dead.
  123. Web site: 7nm Technology . . 30 June 2019.
  124. https://www.digitimes.com/news/a20180622PD204.html TSMC ramping up 7nm chip production
  125. News: Apple's A12 Bionic is the first 7-nanometer smartphone chip. Engadget. 2018-09-20. en-US.
  126. Web site: Smith. Ryan. AMD Announces Radeon Instinct MI60 & MI50 Accelerators: Powered By 7nm Vega. 2021-01-09. www.anandtech.com.
  127. Web site: Cutress. Ian. AMD Ryzen 3000 Announced: Five CPUs, 12 Cores for $499, Up to 4.6 GHz, PCIe 4.0, Coming 7/7. 2021-01-09. www.anandtech.com.
  128. Web site: Smith. Ryan. Sony Teases Next-Gen PlayStation: Custom AMD Chip with Zen 2 CPU & Navi GPU, SSD Too. 2021-01-09. www.anandtech.com.
  129. Web site: Howse. Brett. Xbox at E3 2019: Xbox Project Scarlett Console Launching Holiday 2020. 2021-01-09. www.anandtech.com.
  130. Web site: Samsung Completes Development of 5nm EUV Process Technology. Shilov. Anton. www.anandtech.com. 2019-05-31.
  131. News: TSMC Plans New Fab for 3nm . 26 September 2019 . . 12 December 2016.
  132. Web site: Smith . Ryan . Samsung Starts 3nm Production: The Gate-All-Around (GAAFET) Era Begins . 2022-11-08 . www.anandtech.com.