2024 in paleomammalogy explained
This article records new taxa of fossil mammals of every kind that are scheduled to be described during the year 2024, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2024.
Afrotherians
Proboscideans
Proboscidean research
- Hauffe, Cantalapiedra & Silvestro (2024) present a Bayesian model that can be used to determine diversification dynamics from fossil occurrence data, apply it to the fossil record of proboscideans, and interpret their findings as indicating that the diversification of proboscideans was influenced by dietary flexibility and biogeography (particularly the association with islands), while the emergence of humans was the primary driver of proboscidean extinctions.[1]
- Konidaris et al. (2024) describe new proboscidean material from Late Miocene localities in Romania, including fossils of Deinotherium proavum and "Mammut" cf. obliquelophus, as well as the first fossil material of a member of the genus Konobelodon from the country.[2]
- Yaghoubi et al. (2024) describe fossil material of "Mammut" cf. obliquelophus from the Miocene fossiliferous areas of Maragheh (Iran), extending known geographical range of this taxon.[3]
- Evidence from the study of molars of Notiomastodon platensis from Brazilian Quaternary fossiliferous assemblages, interpreted as indicating that N. platensis was susceptible to tartar development, is presented by Paiva, Alves-Silva & Barbosa (2024).[4]
- A study on the histology of a rib of a specimen of Stegodon florensis florensis from the So'a Basin (Flores, Indonesia) is published by Basilia et al. (2024), who interpret the histology of the bone tissue as possibly indicative of a relatively long lifespan of the studied individual.[5]
- Biswas, Chang & Tsai (2024) provide body mass estimates of specimens of Palaeoloxodon from Taiwan, determining the studied specimens to be similar in size to straight-tusked elephants across Eurasia.[6]
- Pineda et al. (2024) study the assemblage of straight-tusked elephant remains from the Notarchirico site (Italy), and argue that the available evidence does not supporth the interpretation of the studied site as the elephant butchery area.[7]
- Evidence from tooth enamel of a straight-tusked elephant specimen from the MIS 12 site Marathousa 1 (Greece), interpreted as indicating that the studied individual (as well as the hominins that processed its carcass) lived in stable environmental conditions with sufficient plant cover and limited seasonality, is presented by Roditi et al. (2024).[8]
- A study on the age of the fossil, age and health of the individual prior to death, affinities and diagenetic processes after death of the mammoth specimen collected in 1966 from the hydrothermal spring deposit near Soda Springs (Idaho, United States), interpreted as one of the latest members of the Mammuthus jeffersonii lineage from the mainland Western North America reported to date, is published by Morrison et al. (2024).[9]
- Rowe et al. (2024) use isotopic and genetic data from a tusk of a female woolly mammoth from the Swan Point Archaeological Site (Alaska, United States) to trace the studied individual's lifetime movements, interpret their findings as indicative of movement of the studied individual approximately 1000 km northwest in the middle of her life, and compare the range of movement of the studied mammoth with the distribution of early archaeological sites in Alaska, arguing that early North Americans likely settled in the territories frequently used by mammoths.[10]
- Sandoval-Velasco et al. (2024) present evidence of preservation of three-dimensional genome architecture in a 52,000-year-old permafrost-preserved woolly mammoth skin sample collected near Belaya Gora (Sakha Republic, Russia).[11]
- A study on the genetic consequences of isolation of woolly mammoths from Wrangel Island (Russia), as indicated by genomic data, is published by Dehasque et al. (2024), who find that the mainland population of mammoths from northeastern Siberia underwent little changes in genome-wide diversity prior to their extinction, that mammoths from Wrangel Island recovered quickly from the population bottleneck after becoming isolated on the island and their population subsequently remained stable with no evidence of accelerated decline prior to extinction (in spite of evidence of genomic erosion), and that the extinction of mammoths from Wrangel Island happened rapidly and its causes are uncertain.[12]
- A review of the dwarf Sardinan mammoth species Mammuthus lamarmorai is presented by Palombo, Zedda and Zomboli (2024).[13]
Sirenians
Sirenia research
Other afrotherians
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|
Axainamasia[15] | Gen. et sp. nov | | Métais et al. | Eocene-Oligocene transition | Cemalletin Formation | | An embrithopod. The type species is A. sandersi. | |
Crivadiatherium sahini | Sp. nov | | Métais et al. | Eocene | Baraklı Formation | | An embrithopod. | |
Crivadiatherium sevketseni | Sp. nov | | Métais et al. | Eocene | Baraklı Formation | | An embrithopod. | |
|
Miscellaneous afrotherian research
- Vitek & Princehouse (2024) evaluate classification criteria used to assign individual molars to serial position in fossil hyracoids.[16]
Euarchontoglires
Primates
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|
Buronius[17] | Gen. et sp. nov | Valid | Böhme et al. | Late Miocene | Hammerschmiede clay pit | | A hominid. The type species is B. manfredschmidi. | |
Microchoerus erinaceus duplex[18] | Ssp. nov | Valid | Hooker | Paleogene | | | A member of the family Omomyidae. | |
Orogalago[19] | Gen. et sp. nov | | Marivaux in Marivaux et al. | Oligocene (Rupelian) | Samlat Formation | Western Sahara | A probable member of Lorisiformes. The type species is O. saintexuperyi. | |
Orolemur | Gen. et sp. nov | | Marivaux in Marivaux et al. | Oligocene (Rupelian) | Samlat Formation | Western Sahara | A member of Strepsirrhini of uncertain affinities. The type species is O. mermozi. | |
|
Primate research
- A study on the frequency of caries in strepsirrhines and on implications for determining diet and health of fossil members of the group, based on data from extant strepsirrhines, Karanisia clarki and Megaladapis madagascariensis, is published by Selig et al. (2024).[20]
- Bouchet et al. (2024) describe new fossil material of Pliobates cataloniae, and interpret this primate as a member of Pliopithecoidea belonging to the family Crouzeliidae.[21]
- Revision of the fossil material of Old World monkeys from the Pliocene Mount Galili Formation (Ethiopia), indicative of closer similarity of the studied faunal assemblage to monkey assemblages from the Kanapoi and Gona localities than to the one from Aramis, is published by Reda et al. (2024).[22]
- Stan et al. (2024) revise fossil material of Plio–Pleistocene Old World monkeys from Romania, and interpret the studied monkeys as indicative of a mosaic habitat with open and forested areas.[23]
- Pina & Nakatsukasa (2024) interpret the morphology of the ulna of Nacholapithecus kerioi as consistent with adaptations for quadrupedal behaviors, and sharing morphological features with ulnae of large papionins, chimpanzees and extinct taxa such as Equatorius.[24]
- Alba et al. (2024) describe new fossil material of Anoiapithecus brevirostris from the Miocene strata of the Abocador de Can Mata sequence in the Vallès-Penedès Basin (Spain).[25]
- Russo et al. (2024) describe a partial postcranial skeleton of an ape from the Middle Miocene sediments of Napudet (Kenya), interpreting the studied specimen as having large forelimbs and likely relying on forelimb-dominated movement in the tree (possibly including vertical climbing) to a greater degree than most Early Miocene apes.[26]
- Review of the evidence supporting main competing hypotheses on the phylogenetic placement of Oreopithecus bambolii is published by Alba et al. (2024).[27]
- Review of the evidence supporting main competing hypotheses on the causes of extinction of Oreopithecus bambolii is published by DeMiguel & Rook (2024), who interpret the extinction of O. bambolii as most likely caused by competition with and predation by invading species from continental Europe.[28]
- A study on the inner ear and probable locomotion of Lufengpithecus is published by Zhang et al. (2024), who report that Lufengpithecus and other Miocene stem apes had the bony labyrinth morphology intermediate between that of gibbons and great apes, and argue that stem apes shared a common pattern of locomotion that combined aspects of the locomotor behaviors of gibbons and chimpanzees.[29]
- A study on tooth enamel thickness and distribution in Lufengpithecus lufengensis is published by Zhang et al. (2024), who find enamel of Lufengpithecus to be thicker than those of orangutans and gorillas, but thinner than those of Homo erectus and modern humans.[30]
- A study on the timeline and causes of extinction of Gigantopithecus blacki is published by Zhang et al. (2024), who use data from caves in the Chongzuo and Bubing Basin (China) to establish a regional window of extinction of G. blacki at 295.000–215.000 years ago, and interpret the demise of G. blacki as caused by inability to adapt to changes in forest structure resulting from increased seasonality.[31]
- A sample of possible teeth of Pongo devosi is described from the Zhongshan Cave by Liang et al. (2024), representing fossil material of the smallest fossil orangutans from southern China reported to date.[32]
- Cazenave et al. (2024) argue that, contrary to the conclusions of Daver et al. (2022),[33] the anatomy of the femur of Sahelanthropus tchadensis does not support the interpretation of this hominid as habitually bipedal.[34]
- A study on the skull of Sahelanthropus tchadensis is published by Neves et al. (2024), who report that S. tchadensis shared closer morphological similarities with hominins than with great apes.[35]
- Evidence indicating that upper teeth of Sahelanthropus tchadensis fall within the range of dental variation of Plio-Pleistocene hominins is presented by Neves, Valota & Monteiro (2024).[36]
- A study reconstructs the genetic event of tail-loss in human ancestors around 25 million years ago.[37] [38]
General paleoanthropology
- A study on the biogeography of early hominins is published by Sekhavati & Strait (2024).[39]
- Evidence indicating that patterns of speciation and extinction of members of the genus Homo differed from those of other hominins is presented by van Holstein & Foley (2024).[40]
- Evidence from the study of extant mammals, interpreted as indicating that the eastern branch of the Eastern African Rift System might not be representative for morphological diversity and habitat reconstructions of early hominin in the entirety of their likely geographical range, is presented by Barr & Wood (2024).[41]
- A study on changes of the complexity of stone tool manufacturing over the last 3.3 million years is published by Paige & Perreault (2024), who find evidence of an increase of technological complexity approximately 600,000 years ago, interpreted as related to the beginnings of human cumulative culture.[42]
- Braga & Grine (2024) describe new fossil material of Paranthropus robustus from the Kromdraai fossil site (South Africa), providing information on the anatomy of previously unknown portions of the juvenile cranium of P. robustus, and interpret the studied fossil as consistent with the presence of a significant sexual dimorphism in the studied species.[43]
- A study on the endocast of the DNH 7 specimen of Paranthropus robustus from the Drimolen site (South Africa) is published by Falk & Marom (2024), who interpret the studied specimen as indicating that the three species of Paranthropus had a fixed system of enlarged venous sinuses in the skull, as well as suggesting that infants of Australopithecus africanus and members of the genus Paranthropus developed cranial blood flow differently.[44]
- A study on the morphology of the hip bone of the Australopithecus individual known as "Little Foot" is published by Crompton et al. (2024), who interpret "Little Foot" and the individual StW 431 as most likely representing the same species, distinct from Australopithecus africanus and providing evidence of the presence of two species of Australopithecus at Sterkfontein, and interpret the variability of the hip bone morphology of Plio-Pleistocene hominins as consistent with multiple forms of bipedality.[45]
- Rowan & Wood (2024) review the impact of the discovery of the Taung Child for the studies of the hominin evolution at the time of its announcement, as well as the implications of subsequent discoveries for Raymond Dart's assessment of the significance of this finding.[46]
- Claims that the Melka Kunture site-complex (Ethiopia) includes Oldowan and early Acheulean material which is approximately 2.0-1.9 million-years-old, presented by Mussi et al. (2023)[47] and Muttoni et al. (2023),[48] are contested by Gossa et al. (2024).[49]
- Finestone et al. (2024) report the discovery of a new, approximately 1.7-million-years-old Oldowan locality Sare-Abururu (Homa Peninsula, Kenya), interpret the stone tools from this locality as indicating that hominins from Sare-Abururu were skilled knappers using quartz pebbles to produce flakes with sharp cutting edges, and report evidence of different raw material utilization and composition of stone tool assemblages from different Oldowan localities, likely related to differences of local landscapes and ecology.[50]
- Evidence indicating that dental changes associated with later members of the genus Homo were not present in Homo habilis is presented by Davies et al. (2024).[51]
- A study on the histology of teeth of Homo naledi, providing evidence of enamel growth resembling the one seen in modern humans, is published by Mahoney et al. (2024).[52]
- Delezene et al. (2024) interpret low degree of morphological variation between teeth of different individuals of Homo naledi as consistent with the interpretation of known sample of fossils of H. naledi as including few or no individuals of one sex.[53]
- A study on enamel formation in Homo naledi, providing evidence of short episodes of distress resulting from disease and longer periods of distress redulting from a season of undernutrition, is published by Skinner et al. (2024).[54]
- Description of the endocast morphology of one of the specimens of Homo naledi from the Lesedi Chamber of the Rising Star Cave in South Africa (Lesedi Hominin 1) is published by Hurst et al. (2024).[55]
- Foecke, Queffelec & Pickering (2024) argue that geochemical and sedimentological data from the Dinaledi Chamber of the Rising Star Cave System provide no evidence of deliberate burial of remains of Homo naledi in the studied cave.[56]
- Pettitt & Wood (2024) evaluate the strength of the evidence supporting claims about age, burial context and behavior of Homo naledi presented in earlier studies.[57]
- A study on the subsistence strategies of early hominins in tropical grasslands is published by Reschke, Krüger & Hertler (2024), who argue that hominin foragers were able to hunt large herbivores by adopting hunting strategies which did not take long to perform or by extensive cooperation of hunters.[58]
- Garba et al. (2024) determine the oldest stone tools from the Korolevo site (Ukraine) to be approximately 1.42 million years old, making the studied tools the earliest securely dated evidence of hominin presence in Europe reported to date.[59]
- Gibert et al. (2024) determine the early hominin sites in the Orce region of Spain: Venta Micena, Barranco León-5 and Fuente Nueva-3 to be, respectively, approximately 1.32, 1.28 and 1.23 million years old, and interpret these dates as indicating that early hominins using Oldowan technology reached Europe approximately 0.5 million years after first leaving Africa.[60]
- Despriée et al. (2024) determine the occupation of the Lunery-Rosieres la-Terre-des-Sablons site (France) by early hominins to date to around 1,175,000 years ago, and interpret the stone tool industries from this site and from other sites from Western Europe of similar age as indicating that early European hominins settled in zones that were only inhospitable during very cold stages, opportunistically flaked local siliceous materials and occasionally attempted complex core technologies.[61]
- Ma et al. (2024) report evidence of the use of prepared-core technique at the Cenjiawan site in the Nihewan Basin (China), and interpret this finding as indicating that hominins with advanced technologies might have been present in high latitude East Asia as early as 1.1 million years ago.[62]
- Kaifu et al. (2024) describe new hominin fossil material from the Mata Menge site (Flores, Indonesia), providing evidence that approximately 700,000 years ago hominins even smaller than the holotype of Homo floresiensis lived on Flores, and interpret H. floresiensis as member of a long-lasting lineage that likely evolved from Asian Homo erectus and maintained small body size during and beyond the Middle Pleistocene.[63]
- Review of developments in the study of Paleolithic bone knapping tool industries in the preceding years is published by Parfitt & Bello (2024), who reevaluate evidence of the presence of bone knapping tools at the Acheulean Horse Butchery Site (Boxgrove, West Sussex, United Kingdom) and at the Magdalenian Gough's Cave site (Somerset, United Kingdom).[64]
- A study on the morphological variation of the calvaria of Middle Pleistocene hominins from Africa and Eurasia with uncertain affinities is published by Hautavoine et al. (2024), who report that, in the general, the studied fossils from Africa tend to share closer affinities with Homo ergaster and Homo sapiens and the Eurasian specimens with Neanderthals, but also report that some of the studied specimens do not follow this general pattern, and interpret their findings as suggesting that multiple hominin populations with different affinities might have contributed to the emergence of Neanderthals and Homo sapiens.[65]
- A study on the anatomy and affinities of Pleistocene hominins from the Xujiayao site is published by Wu & Bae (2024), who argue that Pleistocene hominins from Xujiayao and Lingjing sites in China might represent a previously unidentified population of large-brained hominins, differing from other Pleistocene hominins in cranial morphology and possibly resulting from interbreeding between different archaic human lineages.[66]
- A study on the morphology of the frontal bone of a Pleistocene hominin from Kocabaş (Turkey) is published by Mori et al. (2024), who interpret the studied hominin as more likely belonging to Homo heidelbergensis sensu lato than to Homo erectus sensu lato.[67]
- Review of genetic differences among Neandertals, Denisovans and modern humans, and of the impact of gene flow between archaic and modern humans on their physiology, is published by Zeberg, Jakobsson & Pääbo (2024).[68]
- A study on the distribution of Denisovan and Neandertal DNA within two modern human populations living in the mountainous terrain surrounding Mount Wilhelm and Daru Island (Papua New Guinea) is published by Yermakovich et al. (2024), who interpret their findings as indicative of a significant role of Denisovan DNA in the adaptive processes of the studied populations, in particular in influencing the biology of their brains and their immune response to tropical diseases.[69]
- Evidence indicating that Denisovans from the Baishiya Karst Cave (China) exploited animals from the Tibetan Plateau (mostly large herbivores, but also carnivores, small mammals and birds) for their bones which were used for tool production, as well as for their meat, marrow and hides, is presented by Xia et al. (2024), who also describe a new Denisovan rib from the Baishiya Karst Cave, providing evidence of presence of Denisovans at the site until at least 48,000–32,000 years ago.[70]
- Pablos & Arsuaga (2024) study the anatomy of tarsals, metatarsal bones and foot phalanges of Middle Pleistocene hominins from the Sima de los Huesos site (Spain), found to be generally more robust than corresponding bones of extant and fossil Homo sapiens, and interpret the anatomy of the studied bones as supporting the placement of the Sima de los Huesos hominins as the sister evolutionaty group of Neanderthals.[71] [72]
- Review of the anatomy of the thorax and lumbar spine of the hominins from the Sima de los Huesos site is published by Gómez-Olivencia & Arsuaga (2024).[73]
- A study on wooden artifacts from Schöningen 13 II-4 (Germany) is published by Leder et al. (2024), who report evidence of the presence of at least 20 hunting weapons as well as evidence of the presence of artifacts which were likely domestic tools, indicating that Schöningen was not only a hunting or butchering site but also a place for domestic activities of the hominins that produced the artifacts.[74]
- Riga et al. (2024) provide evidence of the presence of a hominin with a more archaic metatarsal morphology compared to Neanderthals at the Sedia del Diavolo site (Italy), which might indicate coexistence of at least two hominin clades in the Italian Peninsula during the beginning of Marine Isotope Stage 8.[75]
- Evidence interpreted as indicating that Neanderthals had 2.5 to 3.7% modern human ancestry, as well as indicating that accounting for effects of modern human-introgressed DNA sequences results in reduction of estimates of Neanderthal population size by ~20%, and evidence of two distinct episodes of modern human gene flow into Neanderthal populations is presented by Li et al. (2024).[76]
- A study on the frequency of enamel hypoplasia in Neanderthals and Upper Paleolithic anatomically modern humans is published by Limmer et al. (2024), who interpret their findings as indicative of similar overall early life stress levels in both groups, but also as indicative of differences in the likelihood of occurrence of hypoplasia throughout ontogeny which might be related to differences in childcare between the two groups.[77]
- A study on cut marks on a hyena phalanx bone from the Navalmaíllo Rock Shelter (Spain) is published by Moclán et al. (2024), who interpret the studied cut marks as evidence of skinning of the hyena pelt by Neanderthals.[78]
- Conde-Valverde et al. (2024) report the discovery of remains of a Neanderthal child from Cova Negra (Spain) that lived for at least 6 years in spite of being affected by a debilitating pathology of the inner ear which was likely associated with Down syndrome.[79]
- Evidence of three distinct diets of Neanderthal individuals from the Grotte du Bison and Le Regourdou sites (France) is presented by Dodat et al. (2024).[80]
- Evidence indicating that the availability and distribution of the habitat suitable for the last Neanderthal populations in Europe was affected by climate fluctuations is presented by Albouy et al. (2024).[81]
- Sedrati et al. (2024) report the discovery of Late Pleistocene footprints from a rocky beach in Larache (Morocco) representing the oldest known footprints produced by Homo sapiens reported from Northern Africa and the Southern Mediterranean.[82]
- Evidence from the Shinfa-Metema 1 site (Ethiopia) indicative of intensive riverine-based foraging approximately 74,000 years ago, likely aided by adoption of the bow and arrow, is presented by Kappelman et al. (2024), who argue that adaptation to foraging along dry-season waterholes might have facilitated human dispersal out of Africa.[83]
- A study on the mechanical properties of tool-stones from the Diepkloof Rock Shelter (South Africa) is published by Schmidt et al. (2024), who argue that the Middle Stone Age people selected specific rocks that allowed the best trade-off between the expected properties of tools made from the rocks and the ease of acquiring rocks and producing tools.[84]
- Evidence indicating that the Middle Stone Age people occupying the Sibudu Cave (South Africa) were able to produce tar from plant other than Podocarpus, produced tar through the condensation method using leaves and used tar in both single-component and compound adhesives with different mechanical properties, is presented by Schmidt et al. (2024).[85]
- Evidence from the study of ancient and present-day genomes and paleoecological models, interpreted as indicating that the Iranian Plateau likely acted as the hub for Homo sapiens during early phases of migration out of Africa and colonisation of Eurasia, is presented by Vallini et al (2024).[86]
- Evidence indicating that the choice of global expansion routes of anatomically modern humans beyond Africa was driven by suitable environmental conditions is presented by Saltré et al. (2024).[87]
- Cave art depicting human-like figures interacting with a pig, painted at least 51,200 years ago and representing the oldest surviving example of representational art reported to date, is described from the Leang Karampuang cave (Sulawesi, Indonesia) by Oktaviana et al. (2024), who also determine the hunting scene from the limestone cave of Leang Bulu' Sipong 4 described by Aubert et al. (2019)[88] to be painted at least 48,000 years ago, i.e. more than 4,000 years older than initially assumed.[89]
- Paquin et al. (2024) use habitat suitability models for the Aurignacian technocomplex (interpreted as a proxy for the large scale dispersal of anatomically modern humans into Europe) to determine the impact of climate change and variability on human dispersals into Europe during the Marine Isotope Stage 3.[90]
- Evidence from the study of human remains from the Ilsenhöhle site in Ranis (Germany), interpreted as indicating that Homo sapiens reached parts of Europe north of the Alps by 45,000 years ago, is presented by Mylopotamitaki et al. (2024);[91] Pederzani et al. (2024) interpret people from Ilsenhöhle as living in environment characterized by temperatures substantially below modern-day conditions,[92] while Smith et al. (2024) report evidence interpreted as indicative of low-intensity use of the site, consistent with small, mobile groups occupying different localities for a short time, and indicative of low dietary variability, with a diet based on large terrestrial mammals.[93]
- Yang et al. (2024) identify an Initial Upper Paleolithic assemblage at the Shiyu site in northern China, providing evidence of expansion of Homo sapiens into eastern Asia by about 45,000 years ago, as well as evidence of development of advanced cultural behaviours by people from the studied site.[94]
- A study on five Paleolithic sites from the western Hisma Basin (Jordan) is published by Kadowaki et al. (2024), who find that in the studied area a major increase in the cutting-edge productivity happened after the shift from the Levallois technology to the blade technology in the Initial Upper Paleolithic (i.e. after the conventional Middle-Upper Paleolithic boundary), coinciding with the development of bladelet technology in the Early Upper Paleolithic instead, and argue that the Middle-Upper Paleolithic cultural transition was not a single sudden replacement.[95]
- Sahle et al. (2024) report evidence of increase in the intensity and duration of human occupation of the Gorgora rockshelter (Ethiopia) approximately 42,000 years ago, during a stable wet phase in the Lake Tana area, as well as evidence of the development of innovative technologies and symbolic behaviors at the site starting around this time.[96]
- Evidence from the Abrigo de la Malia site (Tamajón, Guadalajara, Spain), indicative of recurrent presence of anatomically modern humans in inland Iberia during the early and mid-Upper Paleolithic in spite of climate changes that resulted in increase of aridity and trend toward colder conditions, is presented by Sala et al. (2024).[97]
- Conard & Rots (2024) describe a perforated baton made from mammoth ivory from the Hohle Fels Cave (Germany), and interpret is as a probable Aurignacian rope making tool.[98]
- Matzig et al. (2024) demonstrate utility of phylodynamic models in the study of changes of knapped stone projectile points from the European Late Upper Paleolithic, providing artefact phylogeny compatible with known patterns of human dispersal and paleogenomic studies.[99]
- A study on the human population history in Upper Paleolithic Europe, as indicated by data from fossil teeth, is published by Rathmann et al. (2024), who interpret their findings as indicative of a population turnover in Western Europe at the beginning of the Late Pleniglacial (approximately 28,000 years ago), as well as indicative of population bottlenecks of people from Western and Eastern Europe during the Last Glacial Maximum, likely related to migrations to geographically distinct refugia.[100]
- Ge et al. (2024) provide new age estimates for human remains from the Tongtianyan cave (China), ranging from ~33,000 to 23,000 years ago.[101]
- Baker et al. (2024) study personal ornaments of European hunter-gatherers living between 34,000 and 24,000 years ago, and interpret them as indicative of existence of nine distinct cultural entities during the time of the existence of the Gravettian technocomplex.[102]
- Evidence from the Laili rockshelter (East Timor), interpreted as indicative of an abrupt onset of intensive human habitation 44,000 years ago, is presented by Shipton et al. (2024), who consider this human habitation to represent a colonization phase that may have overwhelmed previous human dispersals in Wallacea.[103]
- Kaharudin et al. (2024) present the first evidence of Pleistocene human occupation of the Tanimbar Islands, dating back approximately 42,000 years, and report evidence that early inhabitants of the Tanimbar Islands exploited macropods, which are now locally extinct and might represent the earliest case of animal translocation by humans reported to date.[104]
- Salles et al. (2024) reconstruct the pattern of the peopling of Sahul during the Late Pleistocene from a mechanistic movement model, and interpret their findings as indicative of a wave of dispersal following coastlines and rivers.[105]
- Evidence from the eastern seaboard of Australia, interpret as indicative of human occupation by 30,000 years ago and possibly as early as 49,000–45,000 years ago, is presented by Adams et al. (2024).[106]
- Hawkins et al. (2024) report the discovery of remains of a man and a woman interred in a single grave from the Ratu Mali 2 site (Kisar, Indonesia) which are at least 14.7-thousand-years-old, representing the oldest human burials with established funerary rites from Wallacea reported to date.[107]
- David et al. (2024) report the discovery of 11,000- and 12,000-year-old fireplaces with wooden artefacts at the Cloggs Cave (Australia) matching descriptions of GunaiKurnai ritual installations described in 19th century ethnography, interpreted as evidence of cultural transmission of a ritual practice dating back to the end of the last ice age and continued by approximately 500 generations.[108]
- A study aiming to identify settings viable for vertebrate and human populations in the north Pacific coast of North America during the growth and decay of the Cordilleran ice sheet, providing new age constraints for human coastal migration into North America, is published by Steffen (2024).[109]
- The oldest evidence of the use of hare bone for bead production in western North America known to date is reported from the Clovis La Prele Mammoth site (Wyoming, United States) by Surovell et al. (2024).[110]
- Del Papa et al. (2024) report the presence of cut marks on a specimen of Neosclerocalyptus found on the southern margin of the Reconquista River (Argentina), with radiocarbon date obtained from the pelvis corresponding to the Last Glacial Maximum, and interpreted as consistent with the human occupation of southern South America before 16,000 years ago.[111]
- A study on trees associated with Late Pleistocene/Early Holocene campsites from the Atacama Desert is published by Ugalde et al. (2024), who report evidence of the first people living in the area locating their homes under the tree canopy at two sites, and find that the early people in the area spared the most abundant and resilient tree species, which resulted in promoting fertility oases in the desert.[112]
- Troiano et al. (2024) report the discovery of an association of Early Cretaceous dinosaur tracks and petroglyphs from the Serrote do Letreiro Site (Brazil), and interpret the association as indicating that the engravers acknowledged at least the footprints of theropod dinosaurs and intentionally executed the petroglyphs around them.[113]
- Evidence from isotope analysis of human remains from Taforalt (Morocco), interpreted as indicative as substantial plant-based component in the diets of the hunter-gatherers from this site during the Later Stone Age, is presented by Moubtahij et al. (2024).[114]
- Remains of a stonewall, interpreted as most likely used as a driving lane for the reindeer hunt during the Younger Dryas or early Preboreal and thus representing one of the oldest known examples of hunting architecture worldwide and possibly the oldest man-made megastructure in Europe, are described from the Bay of Mecklenburg (Baltic Sea off the German coast) by Geersen et al. (2024).[115]
- Evidence from ancient DNA from chewed pitch from the Mesolithic Huseby Klev site (Sweden), interpreted as indicating that people from this site suffered from dental diseases similar to modern periodontitis cases, is presented by Kırdök et al. (2024).[116]
- A study on the genetic ancestries and social dynamics of Late Mesolithic individuals from Téviec, Hoedic and Champigny (France), representing some of the last Mesolithic hunter-gatherers in western Europe, is published by Simões et al. (2024), who report evidence of distinct social units of hunter-gatherers in Brittany that maintained intermarriage networks.[117]
- Allentoft et al. (2024) present evidence from ancient genomes from Eurasia, interpreted as indicative of existence of a clear genetic division between Eurasian human populations living on the opposite sites of the boundary zone extending from the Black Sea to the Baltic which lasted throughout the Mesolithic and Neolithic, with large-scale shifts in genetic ancestry related to the arrival of the Early European Farmers visible only in the areas west of the boundary zone, and dissolving only after the spread of the Western Steppe Herders across western Eurasia.[118]
- A study on human demographic trends in 16 regions throughout 30,000 years of human history, providing evidence that frequent disturbances enhanced populations' capacity to resist and recover from later downturns, is published by Riris et al. (2024).[119]
- Morton-Hayward et al. (2024) compile an archive of human brains preserved in the archaeological record spanning approximately 12,000 years, identifying a total of 4405 preserved human brains, including 1308 brains preserved as the only soft tissue among skeletonized remains.[120]
Rodents
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|
Burgia[121] | Nom. nov | Valid | Vianey-Liaud, Weppe & Marivaux | Eocene (Bartonian) | Quercy Phosphorites Formation | | A member of Ischyromyiformes belonging to the family Theridomyidae and the subfamily Patriotheridomyinae; a replacement name for Bernardia Vianey-Liaud (1991). | |
Byzantinia rosamariae[122] | Sp. nov | Valid | López-Antoñanzas et al. | Miocene | | | A cricetodontine. | |
Eliwourus[123] | Gen. et sp. nov | | Seiffert et al. | Oligocene | Topernawi Formation | | A stem anomalure. The type species is E. topernawiensis. | |
Hartenbergeromys pailladensis[124] | Sp. nov | Valid | Vianey-Liaud et al. | Eocene | | | A theridomorph rodent of uncertain affinities. | |
Hystrix aegeanensis[125] | Sp. nov | | Halaçlar et al. | Miocene | |
| A species of Hystrix. | |
Idicia | Gen. et sp. nov | Valid | Vianey-Liaud, Weppe & Marivaux | Eocene (Bartonian) | Quercy Phosphorites Formation | | A member of Ischyromyiformes belonging to the family Theridomyidae. The type species is I. vidalenci. | |
Rhodanomys occitanensis[126] | Sp. nov | Valid | Luccisano et al. | Miocene | | | A member of the family Eomyidae. | |
Siphneus tolaensis[127] | Sp. nov | Valid | Golovanov & Zazhigin | Pleistocene | | | A zokor. | |
Zagoutomys[128] | Gen. et sp. nov | | Viñola-López et al. | Quaternary | | | A hutia. The type species is Z. woodsi. | |
|
Rodent research
- Zack & Penkrot (2024) describe new fossil material of Lophiparamys debequensis from the Eocene Willwood Formation (Wyoming, United States), providing new information on the anatomy of this rodent and representing its first record from the Bighorn Basin.[129]
- Description of the fossil material of Pleistocene flying squirrels from the Yumidong Cave (Chongqing, China), and a study on the implications of the studied fossils for reconstructions of the environments in the Yumidong Cave area from MIS 5 to MIS 2, is published by Pang et al. (2024).[130]
- Halaçlar et al. (2024) describe new fossil material of Hystrix primigenia from the Miocene Asartepe Formation (Turkey) and reevaluate the fossil material of members of the genus Hystrix from Turkey, arguing that Hystrix depereti is absent from the Late Miocene fossil record in Turkey.[131]
- Daxner-Höck, Winkler & Kalthoff (2024) describe new fossil material of Hystrix parvae from the Miocene strata from the Kohfidisch site (Austria), providing new information on the anatomy of skull and teeth of this taxon.[132]
- Bertrand et al. (2024) describe the virtual brain endocast of Incamys bolivianus, reporting evidence of enhanced audition and sound processing which might have been adaptations to group living and complex communication.[133]
- Evidence indicating that Erethizon poyeri had a long, prehensile tail, grasping foot, and lacked dental specializations for bark gnawing - unlike extant North American porcupine but more closely resembling extant prehensile-tailed porcupines - is presented by Vitek et al. (2024).[134]
- Redescription and study on the affinities of Orthomyctera andina is published by Madozzo Jaén & Pérez (2024), who transfer this species to the genus Orocavia in the subfamily Caviinae.[135]
- Taxonomic revision of fossils of members of the tribe Lemmini from the Early and Middle Pleistocene of Europe is published by Louis et al. (2024).[136]
Other euarchontoglires
Miscellaneous euarchontoglires research
- Purported paromomyid "Arcius" ilerdensis is reinterpreted as a member of the family Apatemyidae and transferred to the genus Heterohyus by Beard & Métais (2024).[139]
- A study on the affinities picrodontids, as indicated by the anatomy of the skull of Zanycteris paleocenus, is published by Crowell, Wible & Chester (2024), who argue that picrodontids were not stem primates or even euarchontans.[140]
- Schap et al. (2024) report evidence indicative of a strong relationship of tooth crown height in extant African rodents and lagomorphs with annual precipitation (but not with mean annual temperature), and find that tooth crown height of rodents and lagomorphs from fossil sites in eastern Africa can be used to estimate past annual precipitation and shifting precipitation patterns.[141]
- López-Torres et al. (2024) study the the allometry of brain mass to body mass of members of Euarchontoglires, and provide new estimates of encephalization quotients of Megalagus turgidus, Microsyops annectens, Adapis parisiensis and Necrolemur antiquus.[142]
Laurasiatherians
Artiodactyls
Cetaceans
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|
Adicetus[143] | Gen. et comb. nov | Valid | Figueiredo et al. | Miocene | | | A member of the family Cetotheriidae. The type species is "Cetotherium" vandelli Van Beneden & Gervais (1871); genus also includes "Aulocetus" latus Kellogg (1941). | |
Aureia[144] | Gen. et sp. nov | | Meekin, Fordyce & Coste | Oligocene | Otekaike Limestone Formation | | A member of the superfamily Platanistoidea. The type species is A. rerehua. | |
Echericetus[145] | Gen. et sp. nov | Valid | Hernández-Cisneros et al. | Oligocene | El Cien Formation | | A member of the family Eomysticetidae. The type species is E. novellus. | |
Eolipotes[146] | Gen. et sp. nov | Valid | Kimura & Hasegawa | Miocene | | | A member of the family Lipotidae. The type species is E. japonicus. | |
Fucaia humilis[147] | Sp. nov | Valid | Tsai et al. | Eocene | Lincoln Creek Formation | | A member of the family Aetiocetidae. | |
Incakujira fordycei[148] | Sp. nov | Valid | Kimura & Hasegawa | Miocene | Pisco Formation | | A rorqual. | |
Mamaziphius[149] | Gen. et sp. nov | Valid | Bianucci et al. | Miocene | Pisco Formation | | A beaked whale. The type species is M. reyesi. | |
Miodelphinus[150] | Gen. et sp. nov | Valid | Tanaka & Nakagawa | Miocene | Haze Formation | | A member of the family Squalodelphinidae. The type species is M. miensis. | |
Pebanista[151] | Gen. et sp. nov | Valid | Benites-Palomino et al. | Miocene | Pebas Formation | | A close relative of the South Asian river dolphin. The type species is P. yacuruna. | |
Tohoraonepu[152] | Gen. et sp. nov | | Corrie & Fordyce | Oligocene | Kokoamu Greensand | | A member of the family Kekenodontidae. The species species is T. nihokaiwaiu. | |
|
Cetacean research
- A vertebra of a small-bodied member of the genus Pachycetus, showing low compactness compared to vertebrae of larger members of this genus, is described from the Western Scheldt Estuary at the Belgian-Dutch border (probably from the Bartonian Maldegem Formation) by van Vliet et al. (2024).[153]
- Motani & Pyenson (2024) reevaluate the published body mass estimates of Perucetus colossus, and consider the likeliest body mass of the studied cetacean to fall within the 60–70 ton range.[154]
- Tsai, Kimura & Hasegawa (2024) describe an aetiocetid skull from the Jinnobaru Formation of the Ashiya Group (Japan), and interpret this finding as indicative of coexistence of toothed and baleen-assisted mysticetes in the northwestern Pacific during the Oligocene.[155]
- Nobile et al. (2024) describe fossil material of a member of the genus Kentriodon from the Lower Miocene Bolago Marl (Friulian-Venetian Basin, Italy), representing the first unambiguous record of this genus from Europe reported to date, and interpreted by the authors as likely to be the fossil material of the most ancient member of the genus.[156]
- A study on the bony labyrinth morphology and probable hearing abilities of Parapontoporia sternbergi and P. pacifica is published by Sanks & Racicot (2024), who interpret Parapontoporia as able to hear within narrow-band high frequency ranges.[157]
- The conclusions of the study of Peredo, Pyenson & Uhem (2022), who argued that the presence of lateral palatal foramina alone cannot be used to infer the presence of baleen in mysticetes,[158] are contested by Ekdale et al. (2024), who argue that terrestrial artiodactyls do not have lateral palatal foramina as in baleen whales, and argue that the presence of lateral palatal foramina in stem mysticetes is likely an indicators of the presence of baleen.[159]
- A probable mysticete tooth with similarities to cheek teeth of Llanocetus denticrenatus is described from the Oligocene Alzey Formation (Germany) by Hampe & von der Hocht (2024).[160]
- Tanaka (2024) reports evidence indicative of the existence of a relationship between basihyal-thyrohyal shape and feeding strategy in baleen whales, and argues that the earliest members of Chaeomysticeti fed exclusively on small prey using the baleen plates for filtering, and that dietary preferences of members of Chaeomysticeti diversified later in their evolutionary history.[161]
- Review of the fossil record of eomysticetids from New Zealand is published by Boessenecker & Richards (2024).[162]
- Evidence indicating that New Zealand rocks preserve the first assemblage of Aquitanian baleen whale fossils reported worldwide is presented by Marx et al. (2024).[163]
- Fossil material of a previously unknown baleen whale similar to Isanacetus laticephalus is described from the Burdigalian to Langhian strata from Biratori Town (Hokkaido, Japan) by Tanaka, Motoyama & Sakurai (2024).[164]
- Aiken et al. (2024) report the earliest cetacean remains in the Black Sea region, and report that the harbour porpoise, the common bottlenose dolphin and the common dolphin were present in the Bosphorus as early as 8000–7800 years ago, and that cetaceans reached the northern and northeastern Black Sea, including the Kerch Strait, by 5500 years ago at the latest.[165]
Other artiodactyls
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|
Aliusuellus[166] | Gen. et sp. nov | Valid | Bai et al. | Eocene (Irdinmanhan) | Erlian Basin | | A member of the family Tapirulidae. The type species is A. laolii. | |
Bramiscus[167] | Gen. et sp. nov | Valid | Ríos et al. | Miocene | Chinji Formation | | A member of the family Giraffidae. The type species is B. micros. | |
Hispanodorcas longdongica[168] | Sp. nov | Valid | Wu et al. | Miocene | | | A member of the family Bovidae belonging to the subfamily Antilopinae. | |
Irdinodon | Gen. et sp. nov | Valid | Bai et al. | Eocene (Irdinmanhan) | Erlian Basin | | A member of the subfamily Lantianiinae. The type species is I. bicuspidata. | |
Lyra[169] | Gen. et sp. nov | | Rios & Solounias | Miocene | Chinji Formation | | A member of the family Giraffidae. The type species is L. sherkana. | |
Paraphenacodus gabuniai | Sp. nov | Valid | Bai et al. | Eocene (Arshantan) | Erlian Basin | | | |
Santuccimeryx[170] | Gen. et comb. nov | Valid | Shreero et al. | Orellan and Whitneyan | Brule Formation | ( ) | A member of the family Leptomerycidae. The type species is "Leptomeryx" elissae Korth & Diamond (2002). | |
|
Other artiodactyl research
- Ducrocq et al. (2024) describe new fossil material of Siamochoerus banmarkensis from the late Eocene strata from the Krabi coal mine (Thailand), and interpret the anatomy of the studied remains as indicating that Siamochoerus was closer to the Suidae than to any other suoid family.[171]
- McKenzie et al. (2024) describe new fossil material of tetraconodontines and suine suids from the Vallesian site of Castell de Barberà (Spain), and interpret the studied fossils as indicating that Parachleuastochoerus valentini is a distinct species, and indicating that Versoporcus grivensis is a junior synonym of V. steinheimensis.[172]
- Iannucci (2024) describes 1.47-million-years-old fragment of a metatarsal bone of a member of the genus Sus from the Peyrolles site (France), providing evidence of the presence of suids in Europe within the 1.8-to-1.2-million-years-ago interval.[173]
- A study on the morphological diversity of metapodials of extant and fossil giraffids is published by Martino et al. (2024).[174]
- Laskos & Kostopoulos (2024) review the fossil material of members of the genus Palaeogiraffa, interpreting it as a genus distinct from other Late Miocene giraffids, likely related to the sivatherine lineage.[175]
- Ríos et al. (2024) describe fossil material of juvenile specimens of Decennatherium rex from the Vallesian strata from Batallones-10 (Torrejón de Velasco, Madrid Basin, Spain), providing new information on the ontogeny of this species.[176]
- Laskos & Kostopoulos (2024) describe new fossil material of Palaeotragus inexspectatus from Villafranchian localities in Greece, and interpret almost all fossils of Villafranchian Eurasian giraffids as belonging to members of a single species of Palaeotragus, P. inexspectatus.[177]
- A study on the fossil material of the Pleistocene Dama-like deer from Pirro Nord (Italy), providing evidence of endocranial morphology indicative of closer relationship with extant fallow deers than with other Pleistocene forms and evidence of adaptations for grass-rich diet in open habitats, is published by Strani et al. (2024).[178]
- A study on changes of the distribution of the European fallow deer throughout its evolutionary history, as indicated by ancient and modern DNA, is published by Baker et al. (2024), who report that, although the range of this species covered most of Europe during the Eemian interglacial, it retreated to southern refugia during the last glacial period and did not disperse north afterwards, but rather was translocated by humans.[179]
- A study on the distribution of the European and Persian fallow deers throughout the last 10,000 years, as inferred from zooarchaeological and biomolecular analysis of ancient and modern remains, historical sources and iconography, is published by Baker et al. (2024), who interpret their findings as indicating that after the Last Glacial Maximum the European fallow deer was likely restricted to Anatolia and the Balkans, while the range of the Persian fallow deer extended further west than previously proposed, as it was present at the Bronze Age/early Iron Age sites of Kinet Höyük and Kilise Tepe (Anatolia, Turkey).[180]
- Vislobokova (2024) describes fossil material of Eucladoceros orientalis from the Pleistocene strata from the Taurida Cave in Crimea, and interprets the morphology of the studied remains as supporting its assignment to the genus Eucladoceros.[181]
- A study on the tooth wear in fossil bovids from the Tugen Hills Succession of the Baringo Basin (Kenya) is published by Greiner et al. (2024), who interpret their findings as indicative of increase of mixed-feeding behaviors in post-Miocene bovids.[182]
- New fossil material of Miocene bovids is described from five localities from the Middle Siwalik (Pakistan) by Naz et al. (2024), who interpret the studied fossils as indicative of moist environment with abundant small bodies of standing water.[183]
- Bai, Dong & Zhang (2024) describe fossil material of members of the genus Euceratherium from the Pleistocene strata in the Gonghe Basin, Nihewan Basin and Xinyaozi Ravine (China), representing the first record of members of the genus outside North America reported to date.[184]
- Study on the relationship between distal humerus morphology and habitat preference, body mass and tribe affiliation in extant bovids is published by Anderson, Kovarovic & Barr (2024), who also study the humerus morphology of Rusingoryx atopocranion, support its assignment to the tribe Alcelaphini, and interpret it as adapted for life in open grassland habitats.[185]
- A study on tooth wear of Middle and Late Pleistocene steppe bisons from Eurasia and Alaska is published by Hofman-Kamińska et al. (2024), who interpret steppe bisons as mixed feeders living in a variety of different environments rather than specialized grazers.[186]
- A study on the dietary ecology of bisons from the Pleistocene North America, as indicated by isotopic data from tooth enamel, is published by Hardy & Rowland (2024), who find evidence of mixed feeding behavior in Bison latifrons and Bison antiquus, interpreted as feeding on C4 plants but incorporating C3 plants into their diets when available.[187]
- The holotype specimen of a purported phocid Afrophoca libyca is reinterpreted as a bone of the anthracothere Afromeryx zelteni by Pickford & De Muizon (2024).[188]
- Fidalgo et al. (2024) review the fossil record of hippopotamids on the Iberian Peninsula during the Quaternary, an interpret the fossil record as suggestive of a brief coexistence of Hippopotamus antiquus and the hippopotamus close to the extinction of the former species.[189]
- Romano, Manucci & Bellucci (2024) provide estimates of body mass of a specimen of Hippopotamus antiquus mounted on display at the Museum of Geology and Palaeontology of the University of Florence, recovering an average value for the body mass of approximately 3170 kg.[190]
- Martino et al. (2024) describe fossil material of Hippopotamus cf. antiquus from Malagrotta, and interpret this finding as indicative of longer survival of the species in central Italy than in Portugal and Greece, i.e. slightly after 450,000 years ago.[191]
- Martino et al. (2024) describe a mandible of the hippopotamus from the Fosso Malafede site (Latium, Italy) and revise the fossil record of the hippopotamus from southern Europe, interpreting the species as spread in the Italian Peninsula during the MIS 7.[192]
- Review of the fossil record of Italian hippopotamids from the Middle Pleistocene is published by Mecozzi et al. (2024).[193]
- Patel et al. (2024) describe the anatomy of the skull of Indohyus indirae, reporting evidence of the presence of a combination of features seen in terrestrial even-toed ungulates, Eocene cetaceans and more recent, aquatic cetaceans.[194]
- New cranial material of Khirtharia, providing new information on the skull anatomy of this raoellid, is described by Waqas et al. (2024).[195]
Carnivorans
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|
Cernictis baskini[196] | Sp. nov | Valid | Jiangzuo et al. | Miocene | | | A member of the family Mustelidae belonging to the subfamily Ictonychinae and the tribe Ictonychini. | |
Fejfarictis[197] | Gen. et sp. nov | Valid | De Bonis et al. | Oligocene | | | An early aeluroid. The type species is F. valecensis. | |
Lutravus dianensis | Sp. nov | Valid | Jiangzuo et al. | Miocene | | | A member of the family Mustelidae belonging to the subfamily Ictonychinae and the tribe Lyncodontini. | |
Magerifelis[198] | Gen. et sp. nov | | Salesa et al. | Miocene | |
| A medium-sized feline. The type species is M. peignei. | |
Magophoca[199] | Gen. et sp. nov | Valid | Dewaele & de Muizon | Miocene (Tortonian) | Pisco Formation | | A monachine seal belonging to the tribe Lobodontini. The type species is M. brevirostris. | |
Ontocetus posti[200] | Sp. nov | Valid | Boisville, Chatar & Kohno | Pliocene and Pleistocene | |
| A pinniped belonging to the family Odobenidae. | |
Seronectes[201] | Gen. et sp. nov | | Hafed et al. | Neogene | |
| A monachine seal. The type species is S. meherrinensis. | |
Shansictis | Gen. et sp. nov | Valid | Jiangzuo et al. | Miocene | | | A member of the family Mustelidae belonging to the subfamily Ictonychinae and the tribe Lyncodontini. The type species is S. xinzhouensis. | |
Valenictus sheperdi[202] | Sp. nov | | Boessenecker et al. | Pliocene | Purisima Formation |
| | |
|
Carnivoran research
- Kargopoulos et al. (2024) revise the carnivoran material from the Neogene of eastern Romania, reporting the presence of Pristifelis attica, a member of the genus Paludolutra (extending known geographic range of both taxa) and Protictitherium crassum (providing evidence of the presence of the species in central-eastern Europe after the transition from the Vallesian to the Turolian), and redescribe the type material of Lutra? rumana and "Promephitis" malustenensis.[203]
- Kargopoulos et al. (2024) study the Miocene carnivoran guilds from the Hammerschmiede clay pit (Germany), providing evidence of the presence of a carnivoran fauna distinct from faunas from other Miocene localities from Europe, living in the ecosystem with diverse resources where the majority of carnivoran species occupied distinct niches and avoided competition.[204]
- A mandible of a probable member of the genus Magericyon, likely representing a new species, is described from the Miocene Linxia Basin (China) by Jiangzuo et al. (2024), expanding known diversity of amphicyonids from eastern Asia.[205]
- A study on the allometry of the baculum in extant and extinct canids is published by de Latorre & Marshall (2024).[206]
- Pickford et al. (2024) describe fossil material of the bat-eared fox or a related species from the Pleistocene strata from the Otavi Mountainland (Namibia), interpret this finding as possible evidence of reduction in body size in the bat-eared fox lineage since the Pleistocene, and argue that this lineage likely evolved exclusively within Africa.[207]
- Thabard & Fourvel (2024) revise canid material from the Minnaar's Cave (South Africa) and interpret Canis antiquus as a junior synonym of the side-striped jackal.[208]
- Bartolini-Lucenti et al. (2024) present a virtual reconstruction of the lectotype specimen of Canis arnensis.[209]
- A study on genomes of Japanese wolves and dogs is published by Gojobori et al. (2024), who interpret their findings as indicating that the Japanese wolf was the closest known relative of the extinct gray wolf population which was ancestral to dogs, as well as indicative of an ancient genomic introgression from the Japanese wolf ancestry to dogs which likely happened before the dog's arrival in the Japanese archipelago.[210]
- A study on the evolution of teeth of the giant panda is published by Jiangzuo et al. (2024), who find no evidence of significant differences between teeth of different members of the genus Ailuropoda, and argue that the basic function of the giant panda teeth was constant since the Early Pleistocene.[211]
- Villalba de Alvarado et al. (2024) describe new fossil material of the Asian black bear from the Pleistocene sites in Spain, including postcranial remains which fit within the range of morphological variation of extant members of the species.[212]
- A study on tooth wear in Middle and Late Pleistocene cave bears from the Kudaro 1 and Kudaro 3 caves (South Ossetia) is published by Duñó-Iglesias et al. (2024), who report evidence indicating that diets of the studied bears changed over time in response to changes of climatic and ecological conditions.[213]
- Kastelic Kovačič et al. (2024) present a novel approach to sampling dental collagen which can be used to determine the diet and behavior of cave bears throughout their life, and apply their methods to cave bears remains from the Divje babe I cave (Slovenia), interpreting their findings as indicative of differences in the carbon isotope values from tooth collagen of hibernating individuals and those that failed to hibernate, as well as indicating that the juvenile cave bears did not suckle milk after the first hibernation.[214]
- A study on the paleobiology of cave bears from the Kletno Bear Cave (Poland), providing evidence of episodes of malnutrition affecting young bears, of forelimb fractures and of diseases such as tuberculosis, abscesses and rickets, is published by Marciszak et al. (2024).[215]
- A study on the mandibular morphology of cave bears from the Scladina cave (Belgium) and extant bears is published by Charters et al. (2024), who interpret morphological changes in the mandibles of the studied cave bears through time as adaptations to environmental changes.[216]
- Faggi et al. (2024) describe new fossil material of Meles thorali from the Early Pleistocene locality Saint-Vallier (France), and interpret M. thorali as a taxon distinct from the European badger and closely related to Meles teilhardi.[217]
- Marciszak & Nagel (2024) revise fossil material of martens from the Pleistocene sites Deutsch Altenburg 2 and 4 (Austria), interpreting the studied fossils as most likely belonging to members of only one species, Martes vetus.[218]
- Faggi, Bartolini-Lucenti & Rook (2024) describe new fossil material of Tyrrhenolutra from the Late Miocene localities in Italy and interpret Tyrrhenolutra helbingi as a junior synonym of "Paludolutra" maremmana, resulting in a new combination Tyrrhenolutra maremmana.[219]
- A study on the phylogenetic relationships and evolutionary history of extant and fossil pan-pinnipeds is published by Park et al. (2024).[220]
- A study on the vertebral columns of extant pinnipeds and fossil stem pinnipeds, providing evidence of a shift from the evolution of diverse vertebral morphotypes to the constrained evolution of the vertebral column at the time of the major radiation of crown pinnipeds approximately 10–12 million years ago, is published by Esteban et al. (2024).[221]
- Rule, Burin & Park (2024) find that ecomorphotype groupings are not reliably useful for assigning isolated earless seal fossils to known or new taxa, and consider the majority of extinct earless seal species to be nomina dubia.[222]
- Valenzuela-Toro, Gutstein & Suárez (2024) describe new fossil material of earless seals from the Bahía Inglesa Formation (Chile), including the first record of Hadrokirus martini outside Peru, a member of the genus Acrophoca morphologically distinguishable from A. longirostris, and four indeterminate seals with considerable morphological differences from known contemporaneous taxa.[223]
- A study on the evolution of the morphological diversity of feliforms, based on data from extant and fossil taxa, is published by Barrett & Hopkins (2024).[224]
- A study on the morphological diversity of the upper canine teeth of the saber-tooth feliforms is published by Shelbourne & Lautenschlager (2024).[225]
- Lipecki et al. (2024) describe fossil material of Megaviverra carpathorum from the Pliocene site Węże 1 (Poland), expanding known geographical range of the species, interpret the fossil record of this species as evidence of temporary (3.8–2.8 million years ago) presence of large viverrids in Europe, and consider the appearance of canids belonging to the genus Canis to be most likely main cause of the extinction of large European viverrids.[226]
- A study on the Ictitherium ebu of Ictitherium ebu is published by van der Hoek & Werdelin (2024), who interpret I. ebu as unlikely to be cursorial, and interpret its long slender limbs as likely indicative of ecology similar to that of the maned wolf.[227]
- A study on teeth of members of the hyaenid lineages leading to the brown hyena and Pachycrocuta brevirostris and on their phylogenetic relationships is published by Pérez-Claros (2024), who interprets Pachycrocuta perrieri as ancestral to P. brevirostris in Eurasia and to the brown hyena in Africa, and proposes the inclusion the brown hyena and "Hyaena" prisca into the genus Pachycrocuta.[228]
- Evidence from the study of genomic data from a Late Pleistocene coprolite from Sicily (Italy), indicating that the Sicilian cave hyena belonged to a basal lineage of cave hyenas and was less admixed with the African spotted hyena than mainland European cave hyenas were, is presented by Catalano et al. (2024).[229]
- A study on the tempo and mode of evolution of the skull of nimravids and felids is published by Chatar et al. (2024), who find evidence of a continuous spectrum of shape variationin in the cranium and mandible rather than a distinctive sabertooth morphology, and find that sabertooth adaptations arose in clades with less integrated skulls.[230]
- A study on the cranial mechanics of Barbourofelis fricki and Smilodon fatalis is published by Figueirido, Tucker & Lautenschlager (2024), who interpret the skull of B. fricki as overall more stress-resistant than the skull of S. fatalis, with the latter taxon experiencing lower stresses only in a stabbing scenario, and interpret their findings as suggestive of different killing behavior of the studied taxa.[231]
- Salesa et al. (2024) provide evidence of specimens of Machairodus aphanistus from the Miocene of Cerro de los Batallones (Spain) being affected by bone pathologies that reduced their hunting abilities, and interpret the temporary survival of the studied individuals in spite of the pathologies as consistent with existence of a degree of sociality in M. aphanistus that might have given the affected individuals access to carcasses hunted by other members of the species.[232]
- Moretti et al. (2024) describe fossil material of a member of the genus Homotherium from the McFaddin Beach (Texas, United States), interpreted as likely originating from submerged deposits on the continental shelf in the Gulf of Mexico that were exposed in the Late Pleistocene.[233]
- Stimpson (2024) revises fossil material of Megantereon from the Siwaliks (India), and confirms Megantereon falconeri as a distinct species.[234]
- Tura-Poch et al. (2024) describe a partial neurocranium of member of the genus Megantereon from the latest early Pleistocene (approximately 1 million years old) from the Vallparadís Composite Section (Vallès-Penedès Basin, Spain), representing the most recent record of Megantereon in Western Europe, and interpret the disappearance of European Megantereon as likely related to the climatic shifts associated with the Early-Middle Pleistocene transition.[235]
- A study on bending strength and stiffness changes during the eruption of the adult canines in Smilodon fatalis is published by Tseng (2024), who find evidence of decrease of bending stiffness of the adult canines during their eruption, but also finds that retention of the deciduous canines helped to effectively overcome the reduced bending stiffness of the adult canines.[236]
- Evidence indicating that Smilodon fatalis underwent a shift in mandibular shape related to the eruption of the lower carnassial later in its ontogeny than extant lions do, and reached high efficiency to perform an anchor bite late in its ontogeny, is presented by Chatar et al. (2024), who argue that juveniles of S. fatalis might have remained under parental care longer than lions do.[237]
- A study on the gape and bite force of Smilodon fatalis, providing estimates of bite force similar to that of the jaguar, is published by Deutsch et al. (2024)[238]
- Serdyuk et al. (2024) describe remains of Lynx issiodorensis from the Early Pleistocene strata from the Taurida cave in Crimea with a fused fracture of the metacarpals interpreted as resulting from a healed injury that likely subsequently limited hunting abilities of the affected individual.[239]
- Jiangzuo et al. (2024) describe new fossil material of Acinonyx pleistocaenicus from the Middle Pleistocene strata in Zhoukoudian and in the Jinyuan Cave (China), representing the latest and the largest-bodied member of the species; the authors consider A. pleistocaenicus to be a species distinct from Acinonyx pardinensis, and interpret Acinonyx intermedius as migrating from Africa into Asia around the Early-Middle Pleistocene boundary and replacing A. pleistocaenicus.[240]
Chiropterans
Chiropteran research
- A study on the evolution of limbs traits of bats, based on data from fossil bats and from extant mammals with diverse locomotor modes, is published by Burtner et al. (2024), [242]
- A study on the phylogenetic relationships of Paleogene bats is published by Jones, Beard & Simmons (2024).[243]
- Giannini et al. (2024) study the flight capabilities of Onychonycteris finneyi and modeled intermediate bat forms, find O. finneyi to be capable of both gliding and flapping flight, and find the ability of the modeled intermediate forms to switch from gliding to flapping fight to be facilitated by denser atmosphere estimated for the Eocene.[244]
Eulipotyphlans
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|
Anourosorex andabata[245] | Sp. nov | Valid | Lopatin | Pleistocene | | | An Asian mole shrew. | |
Archaeodesmana dissona[246] | Sp. nov | Valid | Cailleux, van den Hoek Ostende & Joniak | Miocene | | | A desman. | |
Solenodon ottenwalderi | Sp. nov | | Viñola-López et al. | Quaternary | | | A solenodon. | |
|
Eulipotyphlan research
- Averianov & Voyta (2024) reinterpret fossil material of a putative Triassic stem mammal Tikitherium copei as a tooth of a Neogene shrew.[247]
- Furió, Minwer-Barakat & García-Alix (2024) reinterpret fossil material of putative European afrosoricid Europotamogale melkarti as remains of a water-mole of the genus Archaeodesmana.[248]
- Taxonomic revision of the fossil material of Late Pleistocene and Holocene shrews from the Koridornaya Cave (Russian Far East) is published by Omelko & Tiunov (2024).[249]
Perissodactyls
Perissodactyl research
- Kampouridis et al. (2024) describe fossil material of a member of the genus Anisodon and an indeterminate schizotheriine from the Hammerschmiede clay pit (Germany), and interpret the presence of chalicotheriine and schizotheriine remains in different horizons in Hammerschmiede as indicating that chalicotheriines and schizotheriines preferred different environments.[252]
- A tooth of a large herbivorous mammal from the Diahot region of New Caledonia, which was identified by different authors either as a tooth of a rhinoceros or a tooth of the marsupial Zygomaturus diahotensis, is identified by Affholder, Antoine & Beck (2024) as a tooth of Brachypotherium brachypus that was taken to New Caledonia by a European colonist in the 19th century.[253]
- A study on the ecology of Mesaceratherium paulhiacense and Protaceratherium minutum from the Miocene (Aquitanian) Ulm-Westtangente locality (Germany) is published by Hullot et al. (2024), who interpret their findings as indicative of different feeding preferences of the studied species.[254]
- Li et al. (2024) describe new fossil material of Pliorhinus ringstroemi from the Miocene deposits from the Linxia Basin (China), providing new information on the skeletal anatomy of this species, interpret P. ringstroemi as a distinct species related to P. megarhinus and P. miguelcrusafonti, and argue that Pliorhinus might have originated in Asia and migrated to Europe at the latest Miocene.[255]
- A study on the ecology of members of the genus Coelodonta from East Asia, as inferred from stable carbon and oxygen isotope data from their remains, is published by Ma, Wang & Deng (2024), who report evidence of flexible foraging ecologies of Coelodonta nihowanensis in different environments it lived in, and interpret Coelodonta thibetana and the woolly rhinoceros as more likely to be grazers.[256]
- Fordham et al. (2024) reconstruct population dynamics of the woolly rhinoceros, and interpret its extinction as caused by combination of climate-driven habitat fragmentation and low but sustained hunting by humans.[257]
- A study on the fossil record of Miocene and Pliocene horses from the Upper Bone Valley Formation (Florida, United States) is published by Killingsworth & MacFadden (2024), who interpret their findings as indicating that both sampling bias and ecological causes might be responsible for the presence or absence of different horse taxa at fossil sites.[258]
- A study on the tooth wear in the population of Equus simplicidens from the Hagerman Horse Quarry (Idaho, United States), providing evidence of a high-abrasive diet similar to the diets of extant equids, is published by Cirilli, Semprebon & Bernor (2024).[259]
Other laurasiatherians
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|
Carodnia karuen[260] | Sp. nov | Valid | Gelfo, López & Bond | Paleocene | Peñas Coloradas Formation | | A member of Xenungulata. | |
Militocodon[261] | Gen. et sp. nov | | Weaver et al. | Paleocene (Danian) | Denver Formation |
| A member of the family Periptychidae belonging to the subfamily Conacodontinae. The type species is M. lydae. | |
Talquinodus[262] | Gen. et sp. nov | | Kramarz et al. | Eocene | Sarmiento Formation | | An archaic South American ungulate of uncertain affinities. The type species is T. puertai. | |
|
Miscellaneous laurasiatherian research
- Faurby et al. (2024) reconstruct the phylogeny of Carnivoramorpha (including extant and fossil carnivorans), Hyaenodonta and Oxyaenidae, and find that inclusion of fossil taxa in the study of biogeography results in more precise and accurate reconstruction of the ancestral areas of the studied groups.[263]
- Evidence indicating that the morphology of the humerus can be used to determine the habitat of fossil carnivorans and ungulates is presented by Serio et al. (2024).[264]
- Badin et al. (2024) describe new proterotheriid material from the Miocene Camacho Formation of Uruguay and the Loma de Las Tapias and Cerro Azul formations of Argentina, and expand the diagnosis of Neobrachytherium ullumense.[265]
- Schmidt, Armella & Bonini (2024) describe new proterotheriid material from the Andalhuala and Corral Quemado formations (Argentina), interpret known distribution of proterotheriid species as confirming a regional ecological distinction between western and eastern parts of northern Argentina during the late Neogene, and consider ?Proterotherium simplicidens to be a junior synonym of Neobrachytherium intermedium.[266]
- Armella, García-López & Croft (2024) describe the cranial morphology of a juvenile individual of Neobrachytherium intermedium from the Pliocene Andalhuala Formation (Argentina), reporting evidence of age-related changes of cranial traits in Neobrachytherium.[267]
- New estimates of the body mass of Neolicaphrium recens are presented by Corona et al. (2024).[268]
- A study on the phylogenetic relationships of macraucheniids is published by Lobo, Gelfo & Azevedo (2024).[269]
- A study on the diversification dynamics of notoungulates through time, providing evidence of impact of biotic and abiotic factors on speciation and extinction rates, is published by Solórzano, Núñez-Flores & Rodríguez-Serrano (2024).[270]
- A study on changes in the skull and teeth of Coquenia bondi during its ontogeny is published by Deraco, Abdala & García-López (2024).[271]
- Evidence from the study of tooth enamel carbon isotope composition in Miocene to Pleistocene toxodontids from Argentina, interpreted as indicative of gradual shift from the consumption of C3 plants to C4 plants, is presented by Sanz-Pérez et al. (2024).[272]
- Ferrero et al. (2024) describe fossil material of Posnanskytherium desaguaderoi from the Pliocene Tafna Formation, representing the first record of the genus Posnanskytherium from Argentina and the southernmost record of this genus reported to date.[273]
- Description of bone pathologies of two specimens of Toxodon platensis, including the first report of osteomyelitis in a notoungulate, is published by Luna et al. (2024).[274]
- A study on shape and size variations in lower molars of Toxodon platensis is published by Costamagna et al. (2024), who report evidence of shape variations in populations from different parts of South America which might be related to the type of vegetation consumed by members of the studied populations.[275]
- Fernández-Monescillo & Tauber (2024) report evidence indicative of decline in the size and body mass in the last known population of Mesotherium cristatum from the Bonaerian of the Corralito site (Argentina), interpreted as related to environmental changes in South America during the Pleistocene which caused reduction of the distribution area of M. cristatum.[276]
- Armella et al. (2024) describe new notoungulate material from the India Muerta Formation (Tucumán Province, Argentina), including fossils of two toxodontids, one mesotheriid and four hegetotheriids, and interpret the studied fossils as indicative of Tortonian age of the fossiliferous levels of the India Muerta Formation.[277]
- 15 reports about exceptionally well-preserved paleoparadoxiid desmostylian from Gifu Prefecture, Japan are published, this specimen is called as “Paleoparadoxiid Mizunami-Kamado specimen”, known from Lower Miocene Shukunohara Formation. Reports include estimation of age, osteology, classification, accompanied biota, skeletal and life reconstructions.[278]
Xenarthrans
Cingulatans
Cingulatan research
- Núñez-Blasco et al. (2024) revise fossil material of glyptodonts belonging to the tribe Plohophorini from the Neogene Villavil-Quillay Basin (Catamarca Province, Argentina), assign the studied fossils to the single species Stromaphorus ameghini living from the latest Miocene to the Pliocene, and transfer "Panochthus" trouessarti Moreno (1888) to the genus Stromaphorus.[279]
- Asakura & Oliveira (2024) study the histology of osteoderms of Glyptotherium, Holmesina, Pachyarmatherium, Pampatherium, Glyptodon and Doedicurus, providing evidence of features which were likely biomechanical adaptations, as well as evidence of similarity of osteoderms of Pachyarmatherium brasiliense and extant armadillos belonging to the group Dasypodinae/Dasipodini, which might be indicative of their phylogenetic affinity.[280]
- Luna et al. (2024) describe a caudal vertebra of Panochthus from Late Pleistocene deposits in the Santa Fe Province (Argentina) preserved with pathologies interpreted as related to offensive or defensive use of the tail.[281]
Pilosans
Pilosan research
- Lee et al. (2024) describe fossil material of a small-bodied member of the genus Hapalops from the Miocene (Burdigalian) Pampa Castillo site, including the first natural endocast of an extinct mammal from Chile reported to date, and determine the encephalization quotient of the studied sloth as lower than that of extant tree sloths, but higher than that of late Pleistocene ground sloths.[282]
- Review of the nomenclatural history and authorship of Megalonyx and its type species is published by Babcock (2024).[283]
- Fossil material of a probable previously unidentified ground sloth taxon belonging to the genus Nothrotherium is described from the Abismo Ponta de Flecha cave (São Paulo, Brazil) by Chahud et al. (2024).[284]
- Barbosa et al. (2024) report the first case of the calcium pyrophosphate dihydrate crystal deposition disease affecting Nothrotherium maquinense, and interpret this species as having climbing abilities and likely a semi-arboreal lifestyle.[285]
General xenarthran research
- A study on the relationship between size of nutrient foramina of the femur, body mass and aerobic capacity of extant and extinct xenarthrans is published by Varela, Tambusso & Fariña (2024), who interpret their findings as indicating that large extinct xenarthrans such as glyptodonts and ground sloths had aerobic capacities comparable to those of elephants and ungulates, and likely also indicative of higher maximum metabolic rate of large extinct xenarthrans compared to their extant relatives.[286]
Other eutherians
Miscellaneous eutherian research
- A study on cervical vertebrae of Zalambdalestes lechei, providing evidence of axis morphology with no close analog among living mammals, is published by Arnold et al. (2024), who interpret Zalambdalestes as having a neck capable of powerful tugging movements, which might have been used to extract soft-bodied prey from tight hideouts or to immobilize prey through shaking, and argue that Zalambdalestes may have had spinous or bristly fur at the ruff and back.[288]
- Description of the anatomy of the basicranium of Leptictis haydeni is published by Wible & Bertrand (2024).[289]
- A study on the phylogenetic relationships of eutherian mammals, reevaluating the dataset from the study of Velazco et al. (2022)[290] to determine the consequences of using either ordered or unordered morphological characters in a phylogenetic analysis, is published by Brady et al. (2024).[291]
- A study on the evolution of the morphological diversity of limb bones of members of Acreodi, Cimolesta, Dinocerata, Hyaenodonta, Oxyaenodonta and Procreodi, condylarthrans, even- and odd-toed ungulates and carnivorans throughout the Cenozoic is published by Serio et al. (2024), who interpret their findings as indicating that clade interaction and competition rather than abiotic factors were main drivers of the evolution of postcranial morphologies of the studied mammals.[292]
Metatherians
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|
Lemmythentes[293] | Gen. et sp. nov | | Martin et al. | Miocene | Collón Curá Formation | | A member of Paucituberculata. Genus includes new species L. kilmisteri. | |
Minusculothentes | Gen. et sp. nov | | Martin et al. | Miocene | Collón Curá Formation | | A member of Paucituberculata. Genus includes new species M. zeballoensis. | |
Panchothentes | Gen. et sp. nov | | Martin et al. | Miocene | Collón Curá Formation | | A member of Paucituberculata. Genus includes new species P. goini. | |
Peradectes crocheti[294] | Sp. nov | | Gernelle et al. | Eocene | | | | |
Protemnodon dawsonae[295] | Sp. nov | Valid | Kerr et al. | Pliocene | | | | |
Protemnodon mamkurra | Sp. nov | Valid | Kerr et al. | Pleistocene | | | | |
Protemnodon viator | Sp. nov | Valid | Kerr et al. | Pleistocene | | | | |
Thylacopygmaeus[296] | Gen. et sp. nov | | Carneiro et al. | Eocene | Itaboraí Basin | | A member of the family Herpetotheriidae. The type species is T. oliveirai. | |
Xenocynus[297] | Gen. et sp. nov | | Carneiro et al. | Eocene | Itaboraí Basin | | A large-sized marsupialiform belonging to the group Sudameridelphia. The type species is X. crypticus. | |
Zeballolagus | Gen. et 2 sp. nov | | Martin et al. | Miocene | Collón Curá Formation | | A member of Polydolopimorphia. Genus includes new species Z. ronniejamesdioi and Z. separatus. | |
Zeballothentes | Gen. et sp. nov | | Martin et al. | Miocene | Collón Curá Formation | | A member of Paucituberculata. Genus includes new species Z. incertus. | |
|
Metatherian research
- Description of the anatomy of the skull of Sipalocyon externus and a study on its paleoecology is published by Gaillard et al. (2024).[298]
- Wessels, van de Weerd & Marković (2024) describe fossil material of herpetotheriids from the early Oligocene strata in southeastern Serbia, representing species which are also known from Western Europe and confirming the ability of herpetotheriids to cross geographical barriers and disperse over large areas.[299]
- Carneiro et al. (2024) describe new fossil material of Carolocoutoia ferigoloi from the Eocene Itaboraí Basin (Brazil), and interpret Carolocoutoia as the sister taxon of Protodidelphis and as a specialized frugivore.[300]
- Hu et al. (2024) estimate blood flow rates in the femora of extinct kangaroos belonging to the genera Macropus, Protemnodon, Sthenurus, Simosthenurus and Procoptodon, and interpret their findings as suggesting that the locomotion of the studied kangaroos involved applying greater forces to the leg bones compared to the locomotion of extant kangaroos.[301]
- Murphy et al. (2024) study the astragalus of sthenurine and macropodine kangaroos, providing evidence of different patterns of stress on the astragalus in sthenurines and macropodines, as well as in extant and extinct macropodines, which might be related to different patterns of locomotion.[302]
- Redescription of "Silvaroo" buloloensis is published by Kerr & Prideaux (2024), who transfer this species to the genus Dorcopsoides.[303]
- A tooth representing the first fossil material of a member of the genus Protemnodon from the lowland part of New Guinea is described from the Lachitu Cave (Papua New Guinea) by Koungoulos, Flannery & O'Connor (2024).[304]
- Jones & Janis (2024) study the relationship between limb proportions and locomotion in kangaroos, and interpret large species of Protemnodon as most likely predominantly quadrupedal.[305]
- A study on the probable predatory mode of Thylacosmilus and Thylacoleo is published by Janis (2024), who argues that Thylacosmilus was unlikely to be able to kill its prey in the manner similar to the one used by Smilodon, and was more likely to be a specialized scavenger, while Thylacoleo was more likely to have a predatory lifestyle similar to that proposed for sabertoothed placentals.[306]
Monotremes
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|
Dharragarra[307] | Gen. et sp. nov | Valid | Flannery et al. | Late Cretaceous (Cenomanian) | Griman Creek Formation | | The type species is D. aurora. | |
Opalios | Gen. et sp. nov | Valid | Flannery et al. | Late Cretaceous (Cenomanian) | Griman Creek Formation | | The type species is O. splendens. | |
Parvopalus | Gen. et sp. nov | Valid | Flannery et al. | Late Cretaceous (Cenomanian) | Griman Creek Formation | | The type species is P. clytiei. | |
|
Other mammals
Other mammalian research
- Evidence indicating that aspects of both shape and size of the lower fourth premolar can contribute to distinguishing between species belonging to the multituberculate genus Mesodma is presented by Ashbaugh et al. (2024).[312]
- Magallanes et al. (2024) describe a new specimen of Dryolestes priscus from the Upper Jurassic Morrison Formation (Wyoming, United States), and characterize diagnostic features on the molar trigonid of D. priscus and other dryolestids.[313]
General mammalian research
- A study comparing the utility of regression models derived from different skeletal predictors for estimating body mass of Mesozoic mammals is published by Huang et al. (2024).[314]
- A study on the growth of dental cementum in Jurassic mammaliaforms from the Hettangian Hirmeriella fissure suite (Wales, United Kingdom), Bathonian Forest Marble fauna (Oxfordshire, United Kingdom) and the Kimmeridgian Guimarota fauna (Portugal) is published by Newham et al. (2024), who find that none of the studied mammaliaforms (including early crown mammals) reached growth rates and metabolic levels of extant mammals of similar size, but also find evidence of faster growth of early crown mammals compated to earlier mammaliaforms, and argue that the modern mammalian growth strategy evolved at the time of the mid-Jurassic radiation of crown mammals.[315]
- Evidence from phylogenetic and fossil data, interpreted as indicative of increased speciation rates of mammals before and during the Cretaceous-Paleogene transition, is presented by Quintero, Lartillot & Morlon (2024), who argue that the Cretaceous–Paleogene extinction event filtered out more slowly speciating mammalian lineages, and that later diversity of mammals was brought about by separate, fast-speciating mammalian lineages.[316]
- A study on the structure of American mammal communities throughout the Cenozoic is published by Shupinski et al. (2024), who report evidence of shifts in functional diversity associated with major ecological and environmental transitions, and evidence of immediate increase in functional diversity after the Cretaceous–Paleogene extinction event.[317]
- Jones, Travouillon & Janis (2024) compare variation in the hindlimb proportions of extant jerboas and extinct argyrolagids, providing evidence of convergent elongation of metatarsal which might be caused by metatarsal fusion and loss in the studied groups and by greater reliance on bipedalism.[318]
- Evidence of the impact of the rate of landscape changes on the mammalian diversity in the Basin and Range Province in western United States over the past 30 million years is presented by Smiley et al. (2024).[319]
- Calede et al. (2024) report the discovery of the first Arikareean mammal fossils from the Kishnehn Formation (Montana, United States), representing the northernmost records of Paciculus montanus, Pronodens transmontanus and a member of the genus Miohippus from the Rocky Mountains reported to date.[320]
- A study on the diet of mammalian herbivores from the Miocene Buluk site (Kenya), as indicated by stable carbon and oxygen isotope analyses of tooth enamel, is published by Arney et al. (2024), who find no evidence of a significant C4 component in diets of the studied herbivores, in spite of evidence for the presence of C4 vegetation at Buluk.[321]
- A study on dietary habits of late Miocene ungulates and carnivorans from the Neogene savanna in the northern Black Sea region, as indicated by tooth wear in fossils from the sites of Grebeniki (Ukraine), Cioburciu 1 and Tudorovo (Moldova), is published by Rivals et al. (2024), who interpret their findings as indicative of diverse dietary adaptations of the studied ungulates, with rhinoceroses Aceratherium incisivum and Chilotherium schlosseri interpreted as grazers, and with hipparions interpreted as browsers or mixed-feeders.[322]
- A study on predator–prey interactions in the Iberian Peninsula over the last 20 million years, providing evidence of the impact of the loss of medium-sized herbivores on patterns of extinction and persistence among predators, is published by Nascimento et al. (2024).[323]
- A study on body mass, tooth wear and functional traits of teeth of mammalian herbivores from the Miocene to Pleistocene strata from the Falcón Basin (Venezuela), interpreted as indicative of a gradual decline in precipitation and tree cover in the environment of the studied mammals since the late Miocene, is published by Wilson et al. (2024).[324]
- Evidence indicating that climate changes (particularly cooling) had impact on mammal dispersals during the Great American Interchange is presented by Freitas-Oliveira et al. (2024).[325]
- Freitas-Oliveira, Lima-Ribeiro & Terribile (2024) argue that Thylacosmilus had a narrower climatic niche than Smilodon (and likely was more vulnerable to the climate change), and consider it unlikely that the extinction of Thylacosmilus was caused by competition with Smilodon.[326]
- A study on the composition of the mammal faunas from the East African Rift System throughout the last 6 million years is published by Rowan et al. (2024), who report evidence of faunas largely composed of endemic species during the Late Miocene and Pliocene, and evidence of subsequent biotic homogenization likely related to regional expansion of grass-dominated ecosystems.[327]
- Hanon et al. (2024) describe Plio-Pleistocene bovid material from the Kromdraai Unit P (South Africa), including fossil material of a previously unknown buffalo that could be closely related to Syncerus acoelotus and possible oldest fossils of members of the genera Damaliscus and Numidocapra (as well as Paranthropus robustus) in southern Africa, and interpret the studied bovids as indicative of a grassland-dominated environment; the authors also study other associations of bovid and hominin bones from Plio-Pleistocene South African sites, and find than members of the genus Australopithecus were associated with bovids adapted to woodlands and closed-wet environments and that members of the genus Homo were found with bovids adapted to open and dry environments, while members of the genus Paranthropus were found in association with bovids adapted to various environments.[328]
- A study on the dietary guild structures of Pliocene herbivores from the Laetoli site (Tanzania) is published by Fillion & Harrison (2024), who argue that the replacement of Australopithecus afarensis by Paranthropus aethiopicus at the Laetoli site was related to an increase in grass cover within a woodland-grassland mosaic.[329]
- A study in environments inhabited by early members of the genus Homo in Africa and Eurasia, as indicated by dental traits of mammals from these environments, is published by Foister et al. (2024), who interpret their findings as indicating that Early Pleistocene members of the genus Homo were able to occupy diverse environments, and that their expansion into Eurasia likely resulted in a niche expansion.[330]
- A study on changes of ecospace occupancy of European carnivorans throughout the Pleistocene is published by Iannucci (2024), who finds that hominins entered Europe at the time when the continent lacked middle-sized carnivorans that were either highly social active hunters or primarily scavengers, and that hominins had the opportunity to fill a vacant ecospace at the time.[331]
- Carrillo-Briceño et al. (2024) describe a new assemblage of mammal fossils from the Pleistocene site Cauca (Venezuela), including fossils of xenarthran megaherbivores, gomphotheres and equids, as well as fossil material of the ocelot or a related medium-sized feline, representing the first record of fossil material of cf. Leopardus pardalis in north-western Venezuela.[332]
- A study on the carbon and oxygen isotope composition of remains of Eremotherium laurillardi, Notiomastodon platensis and Toxodon platensis from the Zabelê tank in the northeastern Brazil, providing evidence that the studied mammals lived in a transition zone between arboreal to open savanna and had a mixed-feeder diet with a higher consumption of C4 plants compared to mammals from other Late Pleistocene localities in the Brazilian Intertropical Region, is published by Andrade, Dantas & Oliveira (2024).[333]
- Evidence from the cave site of Grotta Grande (Salerno, Campania, Italy), interpreted as indicating that during the Marine Isotope Stage 5 the abandonment of the Neanderthal camp at the site was likely immediately followed by scavenging of remains left by Neanderthals by the spotted hyena, is presented by Spagnolo et al. (2024).[334]
- A study on the ecology of prey species that Neanderthals depended on during the Late Pleistocene, as indicated by strontium isotope data from teeth from the Pech de l'Azé IV and Roc de Marsal sites (France), is published by Hodgkins et al. (2024), who find that the ranges of reindeers and bisons were restricted to the Aquitaine and Paris basins, where they were available year-round to the Neanderthal hunters, while horses and red deers had broader ranges and may have ventured into the mountainous regions.[335]
- A study on the strontium isotope composition of remains of bovids and equids from Kenya living during the Last Glacial Period is published by O'Brien et al. (2024), who find that only Rusingoryx atopocranion and Megalotragus sp. were migratory, while finding no definitive evidence for migration in other studied taxa, including those which are long-distance migrants in the present.[336]
- A study on human prey selection criteria and on their impact on Pleistocene megafauna extinctions is published by Ben-Dor & Barkai (2024), who argue that limited protein metabolism capacity in humans led them to hunt prey (especially large-bodied taxa and prime adults) that were fat-rich but were more sensitive to hunting pressure than smaller prey.[337]
- Bampi et al. (2024) review known record of megafauna kill sites in South America, interpreted it as robust as or even more robust in quantity and quality than North American records, and argue that limited scientific impact of the studies of the South American megafauna kill sites is mainly caused by language bias.[338]
- Evidence from the study of the mammalian fossil record, indicating that the probability of expansion of the range of Cenozoic mammalian species did not depend on the size of the range that the species already occupied, is presented by Žliobaitė (2024).[339]
Notes and References
- Hauffe . T. . Cantalapiedra . J. L. . Silvestro . D. . Trait-mediated speciation and human-driven extinctions in proboscideans revealed by unsupervised Bayesian neural networks . 2024 . Science Advances . 10 . 30 . eadl2643 . 10.1126/sciadv.adl2643 . free . 39047110 . 11268411 .
- Konidaris . G. E. . Rățoi . B. G. . Badea . D. D. . Ursachi . L. . 2024 . New proboscidean specimens from the Late Miocene of Romania: the huge-sized deinothere Deinotherium proavum, the rare "Mammut" cf. obliquelophus and the first description of the shovel-tusker Konobelodon from the country . PalZ . 98 . 2 . 331–355 . 10.1007/s12542-024-00688-8 . free . 2024PalZ...98..331K .
- Yaghoubi . S. . Ashouri . A. R. . Mirzaie Ataabadi . M. . Ghaderi . A. . 2024 . First true mastodon from the Late Miocene of Iran . Swiss Journal of Palaeontology . 143 . 1 . 15 . 10.1186/s13358-023-00300-7 . free . 2024SwJP..143...15Y .
- Paiva . A. C. F. . Alves-Silva . L. . Barbosa . F. H. S. . 2024 . Characterization of dental calculus in the South American Quaternary proboscidean Notiomastodon platensis (Ameghino, 1888) . Journal of Quaternary Science . 10.1002/jqs.3602 . 267568018 .
- Basilia . P. . Miszkiewicz . J. J. . Louys . J. . Wibowo . U. P. . van den Bergh . G. D. . 2024 . Insights into dwarf stegodon (Stegodon florensis florensis) palaeobiology based on rib histology . Annales de Paléontologie . 109 . 4 . 102654 . 10.1016/j.annpal.2023.102654 . 267690501 .
- Biswas . D. S. . Chang . C.-H. . Tsai . C.-H. . 2024 . Land of the giants: Body mass estimates of Palaeoloxodon from the Pleistocene of Taiwan . Quaternary Science Reviews . 336 . 108761 . 10.1016/j.quascirev.2024.108761 . free. 2024QSRv..33608761B .
- Pineda . A. . Mecozzi . B. . Iannucci . A. . Carpentieri . M. . Sardella . R. . Rabinovich . R. . Moncel . M.-H. . 2024 . Reevaluating the "elephant butchery area" at the Middle Pleistocene site of Notarchirico (MIS 16) (Venosa Basin, Basilicata, Italy) . Quaternary Science Reviews . 331 . 108603 . 10.1016/j.quascirev.2024.108603 . free . 2024QSRv..33108603P .
- Roditi . E. . Bocherens . H. . Konidaris . G. E. . Athanassiou . A. . Tourloukis . V. . Karkanas . P. . Panagopoulou . E. . Harvati . K. . 2024 . Life-history of Palaeoloxodon antiquus reveals Middle Pleistocene glacial refugium in the Megalopolis basin, Greece . Scientific Reports . 14 . 1 . 1390 . 10.1038/s41598-024-51592-9 . 38228659 . 10791645 . free . 2024NatSR..14.1390R .
- Morrison . K. . Usachenko . N. . Erdman . J. . Waters . S. . Love . R. L. . 2024 . Piecing together a prehistoric puzzle—regional inferences of micro- and macroscopic analyses of possibly one of the last hybrid mammoths in mainland Western North America . Geology of the Intermountain West . 11 . 21–44 . 10.31711/giw.v11.pp21-44 .
- Rowe . A. G. . Bataille . C. P. . Baleka . S. . Combs . E. A. . Crass . B. A. . Fisher . D. C. . Ghosh . S. . Holmes . C. E. . Krasinski . K. E. . Lanoë . F. . Murchie . T. J. . Poinar . H. . Potter . B. . Rasic . J. T. . Reuther . J. . Smith . G. M. . Spaleta . K. J. . Wygal . B. T. . Wooller . M. J. . A female woolly mammoth's lifetime movements end in an ancient Alaskan hunter-gatherer camp . 2024 . Science Advances . 10 . 3 . eadk0818 . 10.1126/sciadv.adk0818 . 38232155 . 10793946 . free . 2024SciA...10K.818R .
- Sandoval-Velasco . M. . Dudchenko . O. . Rodríguez . J. A. . Estrada . C. P. . Dehasque . M. . Fontsere . C. . Mak . S. S. T. . Khan . R. . Contessoto . V. G. . Oliveira Junior . A. B. . Kalluchi . A. . Zubillaga Herrera . B. J. . Jeong . J. . Roy . R. P. . Christopher . I. . Weisz . D. . Omer . A. D. . Batra . S. S. . Shamim . M. S. . Durand . N. C. . O'Connell . B. . Roca . A. L. . Plikus . M. V. . Kusliy . M. A. . Romanenko . S. A. . Lemskaya . N. A. . Serdyukova . N. A. . Modina . S. A. . Perelman . P. L. . Kizilova . E. A. . Baiborodin . S. I. . Rubtsov . N. B. . Machol . G. . Rath . K. . Mahajan . R. . Kaur . P. . Gnirke . A. . Garcia-Treviño . I. . Coke . R. . Flanagan . J. P. . Pletch . K. . Ruiz-Herrera . A. . Plotnikov . V. . Pavlov . I. S. . Pavlova . N. I. . Protopopov . A. V. . Di Pierro . M. . Graphodatsky . A. S. . Lander . E. S. . Rowley . M. J. . Wolynes . P. G. . Onuchic . J. N. . Dalén . L. . Marti-Renom . M. A. . Gilbert . M. T. P. . Lieberman Aiden . E. . 2024 . Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample . Cell . 187 . 14 . 3541–3562.e51 . 10.1016/j.cell.2024.06.002 . free . 38996487 .
- Dehasque . M. . Morales . H. E. . Díez-del-Molino . D. . Pečnerová . P. . Chacón-Duque . J. C. . Kanellidou . F. . Muller . H. . Plotnikov . V. . Protopopov . A. . Tikhonov . A. . Nikolskiy . P. . Danilov . G. K. . Giannì . M. . van der Sluis . L. . Higham . T. . Heintzman . P. D. . Oskolkov . N. . Gilbert . M. P. T. . Götherström . A. . van der Valk . T. . Vartanyan . S. . Dalén . L. . 2024 . Temporal dynamics of woolly mammoth genome erosion prior to extinction . Cell . 187 . 14 . 3531–3540.e13 . 10.1016/j.cell.2024.05.033 . free . 38942016 .
- Palombo . Maria Rita . Zedda . Marco . Zoboli . Daniel . March 2024 . The Sardinian Mammoth's Evolutionary History: Lights and Shadows . Quaternary . en . 7 . 1 . 10 . 10.3390/quat7010010 . free . 2571-550X.
- Mamdouh . A. . El-Kahawy . R. M. . AbdelGawad . M. . Abu El-Kheir . G. . 2024 . The first Protosiren remains preserved in ornamental limestones, Middle Eocene, North Eastern Desert, Egypt . Proceedings of the Geologists' Association . 135 . 3 . 310–320 . 10.1016/j.pgeola.2024.04.005 . 2024PrGA..135..310M .
- Métais . G. . Coster . P. . Kaya . M. . Licht . A. . Miller . K. . Ocakoğlu . F. . Rust . K. . Beard . K. C. . 2024 . Rapid colonization and diversification of a large-bodied mammalian herbivore clade in an insular context: New embrithopods from the Eocene of Balkanatolia . Journal of Mammalian Evolution . 31 . 2 . 15 . 10.1007/s10914-024-09711-w .
- Vitek . N. S. . Princehouse . P. M. . 2024 . Evaluating the utility of linear measurements to identify isolated tooth loci of extinct Hyracoidea . Acta Palaeontologica Polonica . 69 . 1 . 109–126 . 10.4202/app.01094.2023 . free .
- Böhme . M. . Begun . D. R. . Holmes . A. C. . Lechner . T. . Ferreira . G. . 2024-06-07 . Buronius manfredschmidi—A new small hominid from the early late Miocene of Hammerschmiede (Bavaria, Germany) . . en . 19 . 6 . e0301002 . 10.1371/journal.pone.0301002 . free . 38848328 . 1932-6203 . 11161025. 2024PLoSO..1901002B .
- Hooker . J. J. . The Mammals of the Late Eocene - Early Oligocene Solent Group. Part 2, Euarchonta (Nyctitheriidae and Primates), Lipotyphla, Chiroptera, Pseudorhyncocyonidae, Pantolesta, Apatotheria . 2024 . Monographs of the Palaeontographical Society . 177 . 667 . 148–290 . 10.1080/02693445.2023.2339592 .
- Marivaux . L. . Benammi . M. . Baidder . L. . Saddiqi . O. . Adnet . S. . Charruault . A.-L. . Tabuce . R. . Yans . J. . Benammi . M. . A new primate community from the earliest Oligocene of the Atlantic margin of Northwest Africa: Systematic, paleobiogeographic, and paleoenvironmental implications . 2024 . Journal of Human Evolution . 193 . 103548 . 10.1016/j.jhevol.2024.103548 . 38896896 . free .
- Selig . K. R. . López-Torres . S. . Burrows . A. M. . Silcox . M. T. . Meng . J. . 2024 . Dental caries in living and extinct strepsirrhines with insights into diet . The Anatomical Record . 307 . 6 . 1995–2006 . 10.1002/ar.25420 . 38465830 .
- Bouchet . F. . Zanolli . C. . Urciuoli . A. . Almécija . S. . Fortuny . J. . Robles . J. M. . Beaudet . A. . Moyà-Solà . S. . Alba . D. M. . 2024 . The Miocene primate Pliobates is a pliopithecoid . Nature Communications . 15 . 1 . 2822 . 10.1038/s41467-024-47034-9 . 38561329 . 10984959 . free . 2024NatCo..15.2822B .
- Reda . H. G. . Frost . S. R. . Simons . E. A. . Quade . J. . Simpson . S. W. . 2024 . Description and taxonomic assessment of fossil Cercopithecidae from the Pliocene Galili Formation (Ethiopia) . Journal of Human Evolution . 190 . 103508 . 10.1016/j.jhevol.2024.103508 . 38599140 . 2024JHumE.19003508R .
- Stan . C. . Drăgușin . V. . Vasile . Ș. . Venczel . M. . Terhune . C. E. . 2024 . Dental remains of Plio–Pleistocene Cercopithecidae (Mammalia: Primates) from Romania . Journal of Human Evolution . 193 . 103544 . 10.1016/j.jhevol.2024.103544 . 38954897 .
- Pina . M. . Nakatsukasa . M. . 2024 . New quantitative analyses of the Nacholapithecus kerioi proximal ulna confirm morphological affinities with Equatorius and large papionins . American Journal of Biological Anthropology . e25000 . 10.1002/ajpa.25000 . 39049556 .
- Alba . D. M. . Bouchet . F. . Fortuny . J. . Robles . J. M. . Galindo . J. . Luján . À. H. . Moyà-Solà . S. . Zanolli . C. . 2024 . New remains of the Miocene great ape Anoiapithecus brevirostris from Abocador de Can Mata . Journal of Human Evolution . 188 . 103497 . 10.1016/j.jhevol.2024.103497 . 38402672 . 2024JHumE.18803497A . 267928754 .
- Russo . G. A. . Prang . T. C. . McGechie . F. R. . Kuo . S. . Ward . C. V. . Feibel . C. . Nengo . I. O. . 2024 . An ape partial postcranial skeleton (KNM-NP 64631) from the Middle Miocene of Napudet, northern Kenya . Journal of Human Evolution . 192 . 103519 . 10.1016/j.jhevol.2024.103519 . 38843697 .
- Alba . D. M. . Urcioli . A. . Hammond . A. S. . Almécija . S. . Rook . L. . Zanolli . C. . Miocene ape evolution: Where does Oreopithecus fit in? . 2024 . Bollettino della Società Paleontologica Italiana . 63 . 2 . 153–182 . 10.4435/BSPI.2024.01 .
- DeMiguel . D. M. . Rook . L. . An updated overview on the extinction of Oreopithecus bambolii . 2024 . Bollettino della Società Paleontologica Italiana . 63 . 2 . 183–192 . 10.4435/BSPI.2024.06 .
- Zhang . Y. . Ni . X. . Li . Q. . Stidham . T. . Lu . D. . Gao . F. . Zhang . C. . Harrison . T. . 2024 . Lufengpithecus inner ear provides evidence of a common locomotor repertoire ancestral to human bipedalism . The Innovation . 5 . 2 . 100580 . 10.1016/j.xinn.2024.100580 . 38476202 . 10928440 . free . 2024Innov...500580Z .
- Zhang . L. . Du . B. . Hu . R. . Zhao . L. . 2024 . Three-dimensional molar enamel thickness and distribution patterns in Late Miocene Lufengpithecus lufengensis from Shihuiba, Southwest China . The Anatomical Record . 10.1002/ar.25428 . 38500176 .
- Zhang . Y. . Westaway . K. E. . Haberle . S. . Lubeek . J. K. . Bailey . M. . Ciochon . R. . Morley . M. W. . Roberts . P. . Zhao . J.X. . Duval . M. . Dosseto . A. . Pan . Y. . Rule . S. . Liao . W. . Gully . G. A. . Lucas . M. . Mo . J. . Yang . L. . Cai . Y. . Wang . W. . Joannes-Boyau . R. . 2024 . The demise of the giant ape Gigantopithecus blacki . Nature . 625 . 7995 . 535–539 . 10.1038/s41586-023-06900-0 . 38200315 . 10794149 . free . 2024Natur.625..535Z .
- Liang . H. . Harrison . T. . Shao . Q. . Bahain . J.-J. . Mo . J. . Feng . Y. . Liao . W. . Wang . W. . 2024 . Evidence for the smallest fossil Pongo in southern China . Journal of Human Evolution . 189 . 103507 . 10.1016/j.jhevol.2024.103507 . 38417249 . 2024JHumE.18903507L . 268057973 .
- Daver . G. . Guy . F. . Mackaye . H. T. . Likius . A. . Boisserie . J.-R. . Moussa . A. . Pallas . L. . Vignaud . P. . Clarisse . N. D. . Postcranial evidence of late Miocene hominin bipedalism in Chad . 2022 . Nature . 609 . 7925 . 94–100 . 10.1038/s41586-022-04901-z . 36002567 . 2022Natur.609...94D . 234630242 .
- Cazenave . M. . Pina . M. . Hammond . A. S. . Böhme . M. . Begun . D. R. . Spassov . N. . Vecino Gazabón . A. . Zanolli . C. . Bergeret-Medina . A. . Marchi . D. . Macchiarelli . R. . Wood . B. . 2024 . Postcranial evidence does not support habitual bipedalism in Sahelanthropus tchadensis: A reply to Daver et al. (2022) . Journal of Human Evolution . 103557 . 10.1016/j.jhevol.2024.103557 . 38918139 .
- Neves . W. . Rocha . G. . Senger . M. H. . Hubbe . M. . 2024 . The taxonomy of Sahelanthropus tchadensis from a craniometric perspective . Anais da Academia Brasileira de Ciências . 96 . 3 . e20230680 . 10.1590/0001-3765202420230680 . 38985030 . free .
- Neves . W. . Valota . L. . Monteiro . C. . Dental metrics of Sahelanthropus tchadensis: A comparative analysis with apes and Plio-Pleistocene hominins . 2024 . South African Journal of Science . 120 . 7/8 . 16362 . 10.17159/sajs.2024/16362 .
- News: Novak . Sara . How Humans Lost Their Tails . 11 May 2024 . Scientific American . en.
- Xia . Bo . Zhang . Weimin . Zhao . Guisheng . Zhang . Xinru . Bai . Jiangshan . Brosh . Ran . Wudzinska . Aleksandra . Huang . Emily . Ashe . Hannah . Ellis . Gwen . Pour . Maayan . Zhao . Yu . Coelho . Camila . Zhu . Yinan . Miller . Alexander . Dasen . Jeremy S. . Maurano . Matthew T. . Kim . Sang Y. . Boeke . Jef D. . Yanai . Itai . On the genetic basis of tail-loss evolution in humans and apes . Nature . February 2024 . 626 . 8001 . 1042–1048 . 10.1038/s41586-024-07095-8 . en . 1476-4687. free. 38418917 . 10901737 . 2024Natur.626.1042X .
- Sekhavati . Y. . Strait . D. . 2024 . Estimating ancestral ranges and biogeographical processes in early hominins . Journal of Human Evolution . 191 . 103547 . 10.1016/j.jhevol.2024.103547 . 38781711 . 2024JHumE.19103547S .
- van Holstein . L. A. . Foley . R. A. . 2024 . Diversity-dependent speciation and extinction in hominins . Nature Ecology & Evolution . 8 . 6 . 1180–1190 . 10.1038/s41559-024-02390-z . 38632435 . free . 11166571 . 2024NatEE...8.1180V .
- Barr . W. A. . Wood . B. . 2024 . Spatial sampling bias influences our understanding of early hominin evolution in eastern Africa . Nature Ecology & Evolution . 1–8 . 10.1038/s41559-024-02522-5 .
- Paige . J. . Perreault . C. . 2024 . 3.3 million years of stone tool complexity suggests that cumulative culture began during the Middle Pleistocene . Proceedings of the National Academy of Sciences of the United States of America . 121 . 26 . e2319175121 . 10.1073/pnas.2319175121 . 38885385 . 11214059 . December 17, 2024 . 2024PNAS..12119175P .
- Braga . J. . Grine . F. E. . 2024 . New craniodental fossils of Paranthropus robustus from Kromdraai, South Africa (2014–2017 excavations) . Journal of Human Evolution . 188 . 103481 . 10.1016/j.jhevol.2023.103481 . 38382132 . 2024JHumE.18803481B . 267781003 .
- Falk . D. . Marom . A. . 2024 . The DNH 7 endocast of Paranthropus robustus from Drimolen, South Africa: Reconsidering the functional significance of an enlarged occipital-marginal (O/M) sinus system in robust australopithecines . American Journal of Biological Anthropology . e25010 . 10.1002/ajpa.25010 . 39150888 . free .
- Crompton . R. . Elton . S. . Heaton . J. . Pickering . T. . Carlson . K. . Jashashvili . T. . Beaudet . A. . Bruxelles . L. . Kuman . K. . Thorpe . S. K. . Hirasaki . E. . Scott . C. . Sellers . W. . Pataky . T. . Clarke . R. . McClymont . J. . 2024 . Bipedalism or bipedalisms: The os coxae of StW 573 . Journal of Anatomy . 10.1111/joa.14106 . 39036860 . free .
- Rowan . J. . Wood . B. . 2024 . Dart and the Taung juvenile: making sense of a century-old record of hominin evolution in Africa . Biology Letters . 20 . 7 . 20240185 . 10.1098/rsbl.2024.0185 . 39045658 . free . 11267397 .
- Mussi . M. . Skinner . M. M. . Melis . R. T. . Panera . J. . Rubio-Jara . S. . Davies . T. W. . Geraads . D. . Bocherens . H. . Briatico . G. . Le Cabec . A. . Hublin . J.-J. . Gidna . A. . Bonnefille . R. . Di Bianco . L. . Méndez-Quintas . E. . Early Homo erectus lived at high altitudes and produced both Oldowan and Acheulean tools . 2023 . Science . 382 . 6671 . 713–718 . 10.1126/science.add9115 . 37824630 . 2023Sci...382..713M . 263971011 .
- Muttoni . G. . Perini . S. . Melis . R. T. . Mussi . M. . 2023 . Chronology of the earliest peopling of the Ethiopian highlands at Melka Kunture pre-dating the 1.925 Ma base of the Olduvai subchron . Quaternary Science Reviews . 319 . 108330 . 10.1016/j.quascirev.2023.108330 . 2023QSRv..31908330M . 263694964 .
- Gossa . T. . Asrat . A. . Hovers . E. . Tholt . A. J. . Renne . P. R. . 2024 . Claims for 1.9–2.0 Ma old early Acheulian and Oldowan occupations at Melka Kunture are not supported by a robust age model . Quaternary Science Reviews . 326 . 108506 . 10.1016/j.quascirev.2024.108506 . 2024QSRv..32608506G . 267083670 .
- Finestone . E. M. . Plummer . T. W. . Vincent . T. H. . Blumenthal . S. A. . Ditchfield . P. W. . Bishop . L. C. . Oliver . J. S. . Herries . A. I. R. . Palfery . C. V. . Lane . T. P. . McGuire . E. . Reeves . J. S. . Rodés . A. . Whitfield . E. . Braun . D. R. . Bartilol . S. K. . Kiprono Rotich . N. . Parkinson . J. A. . Lemorini . C. . Caricola . I. . Kinyanjui . R. N. . Potts . R. . 2024 . New Oldowan locality Sare-Abururu (ca. 1.7 Ma) provides evidence of diverse hominin behaviors on the Homa Peninsula, Kenya . Journal of Human Evolution . 190 . 103498 . 10.1016/j.jhevol.2024.103498 . 38581918 . free . 2024JHumE.19003498F .
- Davies . T. W. . Gunz . P. . Spoor . F. . Alemseged . Z. . Gidna . A. . Hublin . J.-J. . Kimbel . W. H. . Kullmer . O. . Plummer . W. P. . Zanolli . C. . Skinner . M. M. . 2024 . Dental morphology in Homo habilis and its implications for the evolution of early Homo . Nature Communications . 15 . 1 . 286 . 10.1038/s41467-023-44375-9 . 38177110 . 10767101 . free . 2024NatCo..15..286D .
- Mahoney . P. . McFarlane . G. . Taurozzi . A. J. . Madupe . P. P. . O'Hara . M. C. . Molopyane . K. . Cappellini . E. . Hawks . J. . Skinner . M. M. . Berger . L. . 2024 . Human-like enamel growth in Homo naledi . American Journal of Biological Anthropology . 184 . 1 . e24893 . 10.1002/ajpa.24893 . 38180115 . free .
- Delezene . L. K. . Scott . J. E. . Irish . J. D. . Villaseñor . A. . Skinner . M. M. . Hawks . J. . Berger . L. R. . 2024 . Sex-biased sampling may influence Homo naledi tooth size variation . Journal of Human Evolution . 187 . 103490 . 10.1016/j.jhevol.2023.103490 . 38266614 . 2024JHumE.18703490D . 267209160 .
- Skinner . M. F. . Delezene . L. K. . Skinner . M. M. . Mahoney . P. . 2024 . Linear enamel hypoplasia in Homo naledi reappraised in light of new Retzius periodicities . American Journal of Biological Anthropology . 184 . 3 . e24927 . 10.1002/ajpa.24927 . 38433613 . free .
- Hurst . S. D. . Holloway . R. L. . Balzeau . A. . Garvin . H. M. . Vanti . W. B. . Berger . L. R. . Hawks . J. . 2024 . The endocast morphology of LES1, Homo naledi . American Journal of Biological Anthropology . 184 . 4 . e24983 . 10.1002/ajpa.24983 . 38864146 .
- Foecke . K. K. . Queffelec . A. . Pickering . R. . 2024 . No Sedimentological Evidence for Deliberate Burial by Homo naledi - A Case Study Highlighting the Need for Best Practices in Geochemical Studies Within Archaeology and Paleoanthropology . PaleoAnthropology .
- Pettitt . P. . Wood . B. . 2024 . What we know and do not know after the first decade of Homo naledi . Nature Ecology & Evolution . 1–5 . 10.1038/s41559-024-02470-0 . 39112660 .
- Reschke . J.-O. . Krüger . S. . Hertler . C. . 2024 . Early hominins: successful hunters, catchers, or scavengers? An agent-based model about hunting strategies in tropical grasslands . Quaternary Environments and Humans . 2 . 5 . 100019 . 10.1016/j.qeh.2024.100019 . free .
- Garba . R. . Usyk . V. . Ylä-Mella . L. . Kameník . J. . Stübner . K. . Lachner . J. . Rugel . G. . Veselovský . F. . Gerasimenko . N. . Herries . A. I. R. . Kučera . J. . Knudsen . M. F. . Jansen . J. D. . East-to-west human dispersal into Europe 1.4 million years ago . 2024 . Nature . 627 . 8005 . 805–810 . 10.1038/s41586-024-07151-3 . free . 38448591 . 2024Natur.627..805G .
- Gibert . L. . Scott . G. . Deino . A. . Martin . R. . Magnetostratigraphic dating of earliest hominin sites in Europe . 2024 . Earth-Science Reviews . 256 . 104855 . 10.1016/j.earscirev.2024.104855 . free . 2024ESRv..25604855G .
- Despriée . J. . Moncel . M.-H. . Courcimault . G. . Voinchet . P. . Jouanneau . J.-C. . Bahain . J.-J. . 2024 . Earliest evidence of human occupations and technological complexity above the 45th North parallel in Western Europe. The site of Lunery-Rosieres la-Terre-des-Sablons (France, 1.1 Ma) . Scientific Reports . 14 . 1 . 16894 . 10.1038/s41598-024-66980-4 . free . 39043764 . 11266561 . 2024NatSR..1416894D .
- Ma . D.-D. . Pei . S.-W. . Xie . F. . Ye . Z. . Wang . F.-G. . Xu . J.-Y. . Deng . C.-L. . de la Torre . I. . 2024 . Earliest Prepared core technology in Eurasia from Nihewan (China): Implications for early human abilities and dispersals in East Asia . Proceedings of the National Academy of Sciences of the United States of America . 121 . 11 . e2313123121 . 10.1073/pnas.2313123121 . 38437546 . 10945746 . September 4, 2024 . 2024PNAS..12113123M .
- Kaifu . Y. . Kurniawan . I. . Mizushima . S. . Sawada . J. . Lague . M. . Setiawan . R. . Sutisna . I. . Wibowo . U. P. . Suwa . G. . Kono . R. T. . Sasaki . T. . Brumm . A. . van den Bergh . G. D. . 2024 . Early evolution of small body size in Homo floresiensis . Nature Communications . 15 . 1 . 6381 . 10.1038/s41467-024-50649-7 . 39107275 . 11303730 . free .
- Parfitt . S. A. . Bello . S. M. . 2024 . Bone tools, carnivore chewing and heavy percussion: assessing conflicting interpretations of Lower and Upper Palaeolithic bone assemblages . Royal Society Open Science . 11 . 1 . 231163 . 10.1098/rsos.231163 . 38179084 . 10762443 . free . 2024RSOS...1131163P .
- Hautavoine . H. . Arnaud . J. . Balzeau . A. . Mounier . A. . 2024 . Quantifying hominin morphological diversity at the end of the middle Pleistocene: Implications for the origin of Homo sapiens . American Journal of Biological Anthropology . 184 . 2 . e24915 . 10.1002/ajpa.24915 . 38444398 . free .
- Wu . X. . Bae . C. J. . 2024 . Xujiayao Homo: A New Form of Large Brained Hominin in Eastern Asia . PaleoAnthropology .
- Mori . T. . Riga . A. . Aytek . A. I. . Harvati . K. . 2024 . Virtual reconstruction and geometric morphometric analysis of the Kocabaş hominin fossil from Turkey: Implications for taxonomy and evolutionary significance . Journal of Human Evolution . 191 . 103517 . 10.1016/j.jhevol.2024.103517 . free . 38781712 . 2024JHumE.19103517M .
- Zeberg . H. . Jakobsson . M. . Pääbo . S. . 2024 . The genetic changes that shaped Neandertals, Denisovans, and modern humans . Cell . 187 . 5 . 1047–1058 . 10.1016/j.cell.2023.12.029 . 38367615 . free .
- Yermakovich . D. . André . M. . Brucato . N. . Kariwiga . J. . Leavesley . M. . Pankratov . V. . Mondal . M. . Ricaut . F.-X. . Dannemann . M. . 2024 . Denisovan admixture facilitated environmental adaptation in Papua New Guinean populations . Proceedings of the National Academy of Sciences of the United States of America . 121 . 26 . e2405889121 . 10.1073/pnas.2405889121 . free. 38889149 . 11214076 . 2024PNAS..12105889Y .
- Xia . H. . Zhang . D. . Wang . J. . Fagernäs . Z. . Li . T. . Li . Y. . Yao . J. . Lin . D. . Troché . G. . Smith . G. M. . Chen . X. . Cheng . T. . Shen . X. . Han . Y. . Olsen . J. V. . Shen . Z. . Pei . Z. . Hublin . J.-J. . Chen . F. . Welker . F. . 2024 . Middle and Late Pleistocene Denisovan subsistence at Baishiya Karst Cave . Nature . 632 . 8023 . 108–113 . 10.1038/s41586-024-07612-9 . 38961285 . 11291277 . free .
- Pablos . A. . Arsuaga . J. L. . 2024 . Metatarsals and foot phalanges from the Sima de los Huesos Middle Pleistocene site (Atapuerca, Burgos, Spain) . The Anatomical Record . 307 . 7 . 2665–2707 . 10.1002/ar.25412 . 38380556 . free .
- Pablos . A. . Arsuaga . J. L. . 2024 . Tarsals from the Sima de los Huesos Middle Pleistocene site (Atapuerca, Burgos, Spain) . The Anatomical Record . 307 . 7 . 2635–2664 . 10.1002/ar.25425 . 38477186 . free .
- Gómez-Olivencia . A. . Arsuaga . J. L. . 2024 . The Sima de los Huesos thorax and lumbar spine: Selected traits and state-of-the-art . The Anatomical Record . 307 . 7 . 2465–2490 . 10.1002/ar.25414 . 38450997 . free .
- Leder . D. . Lehmann . J. . Milks . A. . Koddenberg . T. . Sietz . M. . Vogel . M. . Böhner . U. . Terberger . I. . 2024 . The wooden artifacts from Schöningen's Spear Horizon and their place in human evolution . Proceedings of the National Academy of Sciences of the United States of America . 121 . 15 . e2320484121 . 10.1073/pnas.2320484121 . 38557183 . 11009636 . free . 2024PNAS..12120484L .
- Riga . A. . Profico . A. . Mori . T. . Frittitta . R. . Nava . A. . Mancini . L. . Dreossi . D. . Radovčić . D. . Rice . H. . Bondioli . L. . Marchi . D. . 2024 . The Middle Pleistocene human metatarsal from Sedia del Diavolo (Rome, Italy) . Scientific Reports . 14 . 1 . 6024 . 10.1038/s41598-024-55045-1 . 38472259 . 10933272 . free . 2024NatSR..14.6024R .
- Li . L. . Comi . T. J. . Bierman . R. F. . Akey . J. M. . 2024 . Recurrent gene flow between Neanderthals and modern humans over the past 200,000 years . Science . 385 . 6705 . eadi1768 . 10.1126/science.adi1768 . free . 38991054 . 2024Sci...385i1768L .
- Limmer . L. S. . Santon . M. . McGrath . K. . Harvati . K. . El Zaatari . S. . 2024 . Differences in childhood stress between Neanderthals and early modern humans as reflected by dental enamel growth disruptions . Scientific Reports . 14 . 1 . 11293 . 10.1038/s41598-024-61321-x . free . 38782948 . 11116461 . 2024NatSR..1411293L .
- Moclán . A. . Domínguez-Rodrigo . M. . Huguet . R. . Pizarro-Monzo . M. . Arsuaga . J. L. . Pérez-González . A. . Baquedano . E. . 2024 . Deep learning identification of anthropogenic modifications on a carnivore remain suggests use of hyena pelts by Neanderthals in the Navalmaíllo rock shelter (Pinilla del Valle, Spain) . Quaternary Science Reviews . 329 . 108560 . 10.1016/j.quascirev.2024.108560 . 2024QSRv..32908560M .
- Conde-Valverde . M. . Quirós-Sánchez . A. . Diez-Valero . J. . Mata-Castro . N. . García-Fernández . A. . Quam . R. . Carretero . J. M. . García-González . R. . Rodríguez . L. . Sánchez-Andrés . Á. . Arsuaga . J. L. . Martínez . I. . Villaverde . V. . The child who lived: Down syndrome among Neanderthals? . 2024 . Science Advances . 10 . 26 . eadn9310 . 10.1126/sciadv.adn9310 . 38924400 . free . 11204207 . 2024SciA...10N9310C .
- Dodat . P.-J. . Albalat . E. . Balter . V. . Couture-Veschambre . C. . Hardy . M. . Henrion . J. . Holliday . T. . Maureille . B. . 2024 . Diverse bone-calcium isotope compositions in Neandertals suggest different dietary strategies . Journal of Human Evolution . 193 . 103566 . 10.1016/j.jhevol.2024.103566 . 39029412 .
- Albouy . B. . Paquin . S. . Riel-Salvatore . J. . Kageyama . M. . Vrac . M. . Burke . A. . 2024 . Evaluating the impact of climate change and millennial variability on the last Neanderthal populations in Europe (Marine Isotope Stage 3) . Quaternary Science Reviews . 338 . 108812 . 10.1016/j.quascirev.2024.108812 . 2024QSRv..33808812A .
- Sedrati . M. . Morales . J. A. . Duveau . J. . El M'rini . A. . Mayoral . E. . Díaz-Martínez . I. . Anthony . E. J. . Bulot . G. . Sedrati . A. . Le Gall . R. . Santos . A. . Rivera-Silva . J. . 2024 . A Late Pleistocene hominin footprint site on the North African coast of Morocco . Scientific Reports . 14 . 1 . 1962 . 10.1038/s41598-024-52344-5 . 38263453 . 10806055 . free . 2024NatSR..14.1962S .
- Kappelman . J. . Todd . L. C. . Davis . C. A. . Cerling . T. E. . Feseha . M. . Getahun . A. . Johnsen . R. . Kay . M. . Kocurek . G. A. . Nachman . B. A. . Negash . A. . Negash . T. . O'Brien . K. . Pante . M. . Ren . M. . Smith . E. I. . Tabor . N. J. . Tewabe . D. . Wang . H. . Yang . D. . Yirga . S. . Crowell . J. W. . Fanuka . M. F. . Habtie . T. . Hirniak . J. N. . Klehm . C. . Loewen . N. D. . Melaku . S. . Melton . S. M. . Myers . T. S. . Millonig . A. . Plummer . M. C. . Riordan . K. J. . Rosenau . N. A. . Skinner . A. . Thompson . A. K. . Trombetta . L. M. . Witzel . A. . Assefa . E. . Bodansky . M. . Desta . A. A. . Campisano . C. J. . Dalmas . D. . Elliott . C. . Endalamaw . M. . Ford . N. J. . Foster . F. . Getachew . T. . Haney . Y. L. . Ingram . B. H. . Jackson . J. . Marean . C. W. . Mattox . S. . de la Cruz Medina . K. . Mulubrhan . G. . Porter . K. . Roberts . A. . Santillan . P. . Sollenberger . A. . Sponholtz . J. . Valdes . J. . Wyman . L. . Yadeta . M. . Yanny . S. . 2024 . Adaptive foraging behaviours in the Horn of Africa during Toba supereruption . Nature . 628 . 8007 . 365–372 . 10.1038/s41586-024-07208-3 . 38509364 . 2024Natur.628..365K .
- Schmidt . P. . Pappas . I. . Porraz . G. . Berthold . C. . Nickel . K. G. . 2024 . The driving force behind tool-stone selection in the African Middle Stone Age . Proceedings of the National Academy of Sciences of the United States of America . 121 . 10 . e2318560121 . 10.1073/pnas.2318560121 . 38408239 . 10927537 . August 26, 2024 . 2024PNAS..12118560S . 268028990 .
- Schmidt . P. . Charrié-Duhaut . A. . February . E. . Wadley . L. . 2024 . Adhesive technology based on biomass tar documents engineering capabilities in the African Middle Stone Age . Journal of Human Evolution . 194 . 103578 . 10.1016/j.jhevol.2024.103578 . free . 39146927 .
- Vallini . L. . Zampieri . C. . Shoaee . M. J. . Bortolini . E. . Marciani . G. . Aneli . S. . Pievani . T. . Benazzi . S. . Barausse . A. . Mezzavilla . M. . Petraglia . M. D. . Pagani . L. . 2024 . The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal . Nature Communications . 15 . 1 . 1882 . 10.1038/s41467-024-46161-7 . 38528002 . 10963722 . free . 2024NatCo..15.1882V .
- Saltré . F. . Chadœuf . J. . Higham . T. . Ochocki . M. . Block . S. . Bunney . E. . Llamas . B. . Bradshaw . C. J. A. . 2024 . Environmental conditions associated with initial northern expansion of anatomically modern humans . Nature Communications . 15 . 1 . 4364 . 10.1038/s41467-024-48762-8 . free . 38777837 . 11111671 . 2024NatCo..15.4364S .
- Aubert . M. . Lebe . R. . Oktaviana . A. A. . Tang . M. . Burhan . B. . Hamrullah . Jusdi . A. . Abdullah . Hakim . B. . Zhao . J.X. . Geria . I. M. . Sulistyarto . P. H. . Sardi . R. . Brumm . A. . 2019 . Earliest hunting scene in prehistoric art . Nature . 576 . 7787 . 442–445 . 10.1038/s41586-019-1806-y . 31827284 . 2019Natur.576..442A . 209311825 .
- Oktaviana . A. A. . Joannes-Boyau . R. . Hakim . B. . Burhan . B. . Sardi . R. . Adhityatama . S. . Hamrullah . Sumantri . I. . Tang . M. . Lebe . R. . Ilyas . I. . Abbas . A. . Jusdi . A. . Mahardian . D. E. . Noerwidi . S. . Ririmasse . M. N. R. . Mahmud . I. . Duli . A. . Aksa . L. M. . McGahan . D. . Setiawan . P. . Brumm . A. . Aubert . M. . 2024 . Narrative cave art in Indonesia by 51,200 years ago . Nature . 631 . 8022 . 814–818 . 10.1038/s41586-024-07541-7 . 38961284 . free . 11269172 . 2024Natur.631..814O .
- Paquin . S. . Albouy . B. . Kageyama . M. . Vrac . M. . Burke . A. . 2024 . Anatomically modern human dispersals into Europe during MIS 3: Climate stability, paleogeography and habitat suitability . Quaternary Science Reviews . 330 . 108596 . 10.1016/j.quascirev.2024.108596 . 2024QSRv..33008596P .
- Mylopotamitaki . D. . Weiss . M. . Fewlass . H. . Zavala . E. I. . Rougier . H. . Sümer . A. P. . Hajdinjak . M. . Smith . G. M. . Ruebens . K. . Sinet-Mathiot . V. . Pederzani . S. . Essel . E. . Harking . F. S. . Xia . H. . Hansen . J. . Kirchner . A. . Lauer . T. . Stahlschmidt . M. . Hein . M. . Talamo . S. . Wacker . L. . Meller . H. . Dietl . H. . Orschiedt . J. . Olsen . J. V. . Zeberg . H. . Prüfer . K. . Krause . J. . Meyer . M. . Welker . F. . McPherron . S. P. . Schüler . T. . Hublin . J.-J. . 2024 . Homo sapiens reached the higher latitudes of Europe by 45,000 years ago . Nature . 626 . 7998 . 341–346 . 10.1038/s41586-023-06923-7 . 38297117 . 10849966 . free . 2024Natur.626..341M .
- Pederzani . S. . Britton . K. . Trost . M. . Fewlass . H. . Bourgon . N. . McCormack . J. . Jaouen . K. . Dietl . H. . Döhle . H.-J. . Kirchner . A. . Lauer . T. . Le Corre . M. . McPherron . S. P. . Meller . H. . Mylopotamitaki . D. . Orschiedt . J. . Rougier . H. . Ruebens . K. . Schüler . T. . Sinet-Mathiot . V. . Smith . G. M. . Talamo . S. . Tütken . T. . Welker . F. . Zavala . E. I. . Weiss . M. . Hublin . J.-J. . 2024 . Stable isotopes show Homo sapiens dispersed into cold steppes ~45,000 years ago at Ilsenhöhle in Ranis, Germany . Nature Ecology & Evolution . 8 . 3 . 578–588 . 10.1038/s41559-023-02318-z . 38297139 . free . 10927559 . 2024NatEE...8..578P .
- Smith . G. M. . Ruebens . K. . Zavala . E. I. . Sinet-Mathiot . V. . Fewlass . H. . Pederzani . S. . Jaouen . K. . Mylopotamitaki . D. . Britton . K. . Rougier . H. . Stahlschmidt . M. . Meyer . M. . Meller . H. . Dietl . H. . Orschiedt . J. . Krause . J. . Schüler . T. . McPherron . S. P. . Weiss . M. . Hublin . J.-J. . Welker . F. . 2024 . The ecology, subsistence and diet of ~45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany . Nature Ecology & Evolution . 8 . 3 . 564–577 . 10.1038/s41559-023-02303-6 . 38297138 . free . 10927544 . 2024NatEE...8..564S .
- Yang . S.X. . Zhang . J.F. . Yue . J.P. . Wood . R. . Guo . Y.J. . Wang . H. . Luo . W.G. . Zhang . Y. . Raguin . E. . Zhao . K.L. . Zhang . Y.X. . Huan . F.X. . Hou . Y.M. . Huang . W.W. . Wang . Y.R. . Shi . J.M. . Yuan . B.Y. . Ollé . A. . Queffelec . A. . Zhou . L.P. . Deng . C.L. . d'Errico . F. . Petraglia . M. . 2024 . Initial Upper Palaeolithic material culture by 45,000 years ago at Shiyu in northern China . Nature Ecology & Evolution . 8 . 3 . 552–563 . 10.1038/s41559-023-02294-4 . 38238436 . 2024NatEE...8..552Y . 267042058 .
- Kadowaki . S. . Wakano . J. Y. . Tamura . T. . Watanabe . A. . Hirose . M. . Suga . E. . Tsukada . K. . Tarawneh . O. . Massadeh . S. . 2024 . Delayed increase in stone tool cutting-edge productivity at the Middle-Upper Paleolithic transition in southern Jordan . Nature Communications . 15 . 1 . 610 . 10.1038/s41467-024-44798-y . 38326315 . 10850154 . free . 2024NatCo..15..610K .
- Sahle . Y. . Firew . G. A. . Pearson . O. M. . Stynder . D. D. . Beyin . A. . 2024 . MIS 3 innovative behavior and highland occupation during a stable wet episode in the Lake Tana paleoclimate record, Ethiopia . Scientific Reports . 14 . 1 . 17038 . 10.1038/s41598-024-67743-x . free . 39048619 . 11269595 . 2024NatSR..1417038S .
- Sala . N. . Alcaraz-Castaño . M. . Arriolabengoa . M. . Martínez-Pillado . V. . Pantoja-Pérez . A. . Rodríguez-Hidalgo . A. . Téllez . E. . Cubas . M. . Castillo . S. . Arnold . L. J. . Demuro . M. . Duval . M. . Arteaga-Brieba . A. . Llamazares . J. . Ochando . J. . Cuenca-Bescós . G. . Marín-Arroyo . A. B. . Martín Seijo . M. . Luque . L. . Alonso-Llamazares . C. . Arlegi . M. . Rodríguez-Almagro . M. . Calvo-Simal . C. . Izquierdo . B. . Cuartero . F. . Torres-Iglesias . L. . Agudo-Pérez . L. . Arribas . A. . Carrión . J. S. . Magri . D. . Zhao . J.-X. . Pablos . A. . Nobody's land? The oldest evidence of early Upper Paleolithic settlements in inland Iberia . 2024 . Science Advances . 10 . 26 . eado3807 . 10.1126/sciadv.ado3807 . 38924409 . free . 2024SciA...10O3807S .
- Conard . N. J. . Rots . V. . Rope making in the Aurignacian of Central Europe more than 35,000 years ago . 2024 . Science Advances . 10 . 5 . eadh5217 . 10.1126/sciadv.adh5217 . 38295167 . 10830101 . free . 2024SciA...10H5217C .
- Matzig . D. N. . Marwick . B. . Riede . F. . Warnock . R. C. M. . 2024 . A macroevolutionary analysis of European Late Upper Palaeolithic stone tool shape using a Bayesian phylodynamic framework . Royal Society Open Science . 11 . 8 . 240321 . 10.1098/rsos.240321 . 11321859 . free . 39144489 .
- Rathmann . H. . Vizzari . M. T. . Beier . J. . Bailey . S. E. . Ghirotto . S. . Harvati . K. . Human population dynamics in Upper Paleolithic Europe inferred from fossil dental phenotypes . 2024 . Science Advances . 10 . 33 . eadn8129 . 10.1126/sciadv.adn8129 . free . 39151011 . 11328903 .
- Ge . J. . Xing . S. . Grün . R. . Deng . C. . Jiang . Y. . Jiang . T. . Yang . S. . Zhao . K. . Gao . X. . Yang . H. . Guo . Z. . Petraglia . M. D. . Shao . Q. . 2024 . New Late Pleistocene age for the Homo sapiens skeleton from Liujiang southern China . Nature Communications . 15 . 1 . 3611 . 10.1038/s41467-024-47787-3 . free . 38684677 . 11058812 . 2024NatCo..15.3611G .
- Baker . J. . Rigaud . S. . Pereira . D. . Courtenay . L. A. . d'Errico . F. . 2024 . Evidence from personal ornaments suggest nine distinct cultural groups between 34,000 and 24,000 years ago in Europe . Nature Human Behaviour . 8 . 3 . 431–444 . 10.1038/s41562-023-01803-6 . 38287173 . 267318570 .
- Shipton . C. . Morley . M. W. . Kealy . S. . Norman . K. . Boulanger . C. . Hawkins . S. . Litster . M. . Withnell . C. . O'Connor . S. . 2024 . Abrupt onset of intensive human occupation 44,000 years ago on the threshold of Sahul . Nature Communications . 15 . 1 . 4193 . 10.1038/s41467-024-48395-x . free . 38778054 . 11111772 . 2024NatCo..15.4193S .
- Kaharudin . H. A. F. . O'Connor . S. . Kealy . S. . Ririmasse . M. N. . 2024 . Islands on the edge: 42,000-year-old occupation of the Tanimbar islands and its implications for the Sunda-Sahul early human migration discourse . Quaternary Science Reviews . 338 . 108834 . 10.1016/j.quascirev.2024.108834 . free . 2024QSRv..33808834K .
- Salles . T. . Joannes-Boyau . R. . Moffat . I. . Husson . L. . Lorcery . M. . 2024 . Physiography, foraging mobility, and the first peopling of Sahul . Nature Communications . 15 . 1 . 3430 . 10.1038/s41467-024-47662-1 . 38653772 . 11039755 . free . 2024NatCo..15.3430S .
- Adams . S. . Norman . K. . Kemp . J. . Jacobs . Z. . Costelloe . M. . Fairbairn . A. . Robins . R. . Stock . E. . Moss . P. . Smith . T. . Love . S. . Manne . T. . Lowe . K. M. . Logan . I. . Manoel . M. . McFadden . K. . Burns . D. . Falkiner . Z. . Clarkson . C. . 2024 . Early human occupation of Australia's eastern seaboard . Scientific Reports . 14 . 1 . 2579 . 10.1038/s41598-024-52000-y . 38296988 . free . 10830458 . 2024NatSR..14.2579A .
- Hawkins . S. . Zetika . G. A. . Kinaston . R. . Firmando . Y. R. . Sari . D. M. . Suniarti . Y. . Lucas . M. . Roberts . P. . Reepmeyer . C. . Maloney . T. . Kealy . S. . Stirling . C. . Reid . M. . Barr . D. . Kleffmann . T. . Kumar . A. . Yuwono . P. . Litster . M. . Husni . M. . Ririmasse . M. . Mahirta . Mujabuddawat . M. . Harriyadi . O'Connor . S. . 2024 . Earliest known funerary rites in Wallacea after the last glacial maximum . Scientific Reports . 14 . 1 . 282 . 10.1038/s41598-023-50294-y . 38168501 . 10762057 . free . 2024NatSR..14..282H .
- David . B. . Mullett . R. . Wright . N. . Stephenson . B. . Ashi . J. . Fresløv . J. . GunaiKurnai Land and Waters Aboriginal Corporation . Delannoy . J.-J. . McDowell . M. C. . Mialanes . J. . Petchey . F. . Arnold . L. J. . Rogers . A. J. . Crouch . J. . Green . H. . Urwin . C. . Matheson . C. D. . 2024 . Archaeological evidence of an ethnographically documented Australian Aboriginal ritual dated to the last ice age . Nature Human Behaviour . 1–12 . 10.1038/s41562-024-01912-w . 38951612 . free .
- Steffen . M. L. . 2024 . New age constraints for human entry into the Americas on the north Pacific coast . Scientific Reports . 14 . 1 . 4291 . 10.1038/s41598-024-54592-x . 38383701 . 10881565 . free . 2024NatSR..14.4291S .
- Surovell . T. A. . Litynski . M. L. . Allaun . S. A. . Buckley . M. . Schoborg . T. A. . Govaerts . J. A. . O'Brien . M. J. . Pelton . S. R. . Sanders . P. H. . Mackie . M. E. . Kelly . R. L. . 2024 . Use of hare bone for the manufacture of a Clovis bead . Scientific Reports . 14 . 1 . 2937 . 10.1038/s41598-024-53390-9 . 38316967 . 10844228 . free . 2024NatSR..14.2937S .
- Del Papa . M. . De Los Reyes . M. . Poiré . D. G. . Rascovan . N. . Jofré . G. . Delgado . M. . Anthropic cut marks in extinct megafauna bones from the Pampean region (Argentina) at the last glacial maximum . 2024 . PLOS ONE . 19 . 7 . e0304956 . 10.1371/journal.pone.0304956 . free . 39018301 . 11253959 . 2024PLoSO..1904956D .
- Ugalde . P. C. . Joly . D. . Latorre . C. . Gayo . E. M. . Labarca . R. . Simunovic . M. . McRostie . V. . Holliday . V. T. . Quade . J. . Santoro . C. M. . 2024 . The first peoples of the Atacama Desert lived among the trees: A 11,600- to 11,200-year-old grove and congregation site . Proceedings of the National Academy of Sciences of the United States of America . 121 . 18 . e2320506121 . 10.1073/pnas.2320506121 . 38648488 . 11067013 . October 22, 2024 . 2024PNAS..12120506U .
- Troiano . L. P. . dos Santos . H. B. . Aureliano . T. . Ghilardi . A. M. . 2024 . A remarkable assemblage of petroglyphs and dinosaur footprints in Northeast Brazil . Scientific Reports . 14 . 1 . 6528 . 10.1038/s41598-024-56479-3 . 38499621 . 10948842 . free . 2024NatSR..14.6528T .
- Moubtahij . Z. . McCormack . J. . Bourgon . N. . Trost . M. . Sinet-Mathiot . V. . Fuller . B. T. . Smith . G. M. . Temming . H. . Steinbrenner . S. . Hublin . J.-J. . Bouzouggar . A. . Turner . E. . Jaouen . K. . 2024 . Isotopic evidence of high reliance on plant food among Later Stone Age hunter-gatherers at Taforalt, Morocco . Nature Ecology & Evolution . 8 . 5 . 1035–1045 . 10.1038/s41559-024-02382-z . free . 38684738 . 11090808 . 2024NatEE...8.1035M .
- Geersen . J. . Bradtmöller . M. . Schneider von Deimling . J. . Feldens . P. . Auer . J. . Held . P. . Lohrberg . A. . Supka . R. . Hoffmann . J. J. L. . Eriksen . B. V. . Rabbel . W. . Karlsen . H.-J. . Krastel . S. . Brandt . D. . Heuskin . D. . Lübke . H. . 2024 . A submerged Stone Age hunting architecture from the Western Baltic Sea . Proceedings of the National Academy of Sciences of the United States of America . 121 . 8 . e2312008121 . 10.1073/pnas.2312008121 . 38346187 . 10895374 . free . 2024PNAS..12112008G .
- Kırdök . E. . Kashuba . N. . Damlien . H. . Manninen . M. A. . Nordqvist . B. . Kjellström . A. . Jakobsson . M. . Lindberg . A. M. . Storå . J. . Persson . P. . Andersson . B. . Aravena . A. . Götherström . A. . 2024 . Metagenomic analysis of Mesolithic chewed pitch reveals poor oral health among stone age individuals . Scientific Reports . 13 . 1 . 22125 . 10.1038/s41598-023-48762-6 . 38238372 . 10796427 . free .
- Simões . L. G. . Peyroteo-Stjerna . R. . Marchand . G. . Bernhardsson . C. . Vialet . A. . Chetty . D. . Alaçamlı . E. . Edlund . H. . Bouquin . D. . Dina . C. . Garmond . N. . Günther . T. . Jakobsson . M. . 2024 . Genomic ancestry and social dynamics of the last hunter-gatherers of Atlantic France . Proceedings of the National Academy of Sciences of the United States of America . 121 . 10 . e2310545121 . 10.1073/pnas.2310545121 . 38408241 . 10927518 . free . 2024PNAS..12110545S .
- Allentoft . M. E. . Sikora . M. . Refoyo-Martínez . A. . Irving-Pease . E. K. . Fischer . A. . Barrie . W. . Ingason . A. . Stenderup . J. . Sjögren . K.-G. . Pearson . A. . Sousa da Mota . B. . Schulz Paulsson . B. . Halgren . A. . Macleod . R. . Jørkov . M. L. S. . Demeter . F. . Sørensen . L. . Nielsen . P. O. . Henriksen . R. A. . Vimala . T. . McColl . H. . Margaryan . A. . Ilardo . M. . Vaughn . A. . Mortensen . M. F. . Nielsen . A. B. . Ulfeldt Hede . M. . Johannsen . N. N. . Rasmussen . P. . Vinner . L. . Renaud . G. . Stern . A. . Jensen . T. Z. T. . Scorrano . G. . Schroeder . H. . Lysdahl . P. . Ramsøe . A. D. . Skorobogatov . A. . Schork . A. J. . Rosengren . A. . Ruter . A. . Outram . A. . Timoshenko . A. A. . Buzhilova . A. . Coppa . A. . Zubova . A. . Silva . A. M. . Hansen . A. J. . Gromov . A. . Logvin . A. . Gotfredsen . A. B. . Nielsen . B. H. . González-Rabanal . B. . Lalueza-Fox . C. . McKenzie . C. J. . Gaunitz . C. . Blasco . C. . Liesau . C. . Martinez-Labarga . C. . Pozdnyakov . D. V. . Cuenca-Solana . D. . Lordkipanidze . D. O. . En'shin . D. . Salazar-García . D. C. . Price . T. D. . Borić . D. . Kostyleva . E. . Veselovskaya . E. V. . Usmanova . E. R. . Cappellini . E. . Brinch Petersen . E. . Kannegaard . E. . Radina . F. . Yediay . F. E. . Duday . H. . Gutiérrez-Zugasti . I. . Merts . I. . Potekhina . I. . Shevnina . I. . Altinkaya . I. . Guilaine . J. . Hansen . J. . Aura Tortosa . J. E. . Zilhão . J. . Vega . J. . Pedersen . K. B. . Tunia . K. . Zhao . L. . Mylnikova . L. N. . Larsson . L. . Metz . L. . Yepiskoposyan . L. . Pedersen . L. . Sarti . L. . Orlando . L. . Slimak . L. . Klassen . L. . Blank . M. . González-Morales . M. . 1 . Silvestrini . M. . Vretemark . M. . Nesterova . M. S. . Rykun . M. . Rolfo . M. F. . Szmyt . M. . Przybyła . M. . Calattini . M. . Sablin . M. . Dobisíková . M. . Meldgaard . M. . Johansen . M. . Berezina . N. . Card . N. . Saveliev . N. A. . Poshekhonova . O. . Rickards . O. . Lozovskaya . O. V. . Gábor . O. . Uldum . O. C. . Aurino . P. . Kosintsev . P. . Courtaud . P. . Ríos . P. . Mortensen . P. . Lotz . P. . Persson . P. . Bangsgaard . P. . de Barros Damgaard . P. . Petersen . P. V. . Prieto Martinez . P. . Włodarczak . P. . Smolyaninov . R. V. . Maring . R. . Menduiña . R. . Badalyan . R. . Iversen . R. . Turin . R. . Vasilyev . S. . Wåhlin . S. . Borutskaya . S. . Skochina . S. . Sørensen . S. A. . Andersen . S. H. . Jørgensen . T. . Serikov . Y. B. . Molodin . V. I. . Smrcka . V. . Merts . V. . Appadurai . V. . Moiseyev . V. . Magnusson . Y. . Kjær . K. H. . Lynnerup . N. . Lawson . D. J. . Sudmant . P. H. . Rasmussen . S. . Korneliussen . T. S. . Durbin . R. . Nielsen . R. . Delaneau . O. . Werge . T. . Racimo . F. . Kristiansen . K. . Willerslev . E. . Population genomics of post-glacial western Eurasia . 2024 . Nature . 625 . 7994 . 301–311 . 10.1038/s41586-023-06865-0 . free . 38200295 . 10781627 . 2024Natur.625..301A .
- Riris . P. . Silva . F. . Crema . E. . Palmisano . A. . Robinson . E. . Siegel . P. E. . French . J. C. . Jørgensen . E. K. . Maezumi . S. Y. . Solheim . S. . Bates . J. . Davies . B. . Oh . Y. . Ren . X. . Frequent disturbances enhanced the resilience of past human populations . 2024 . Nature . 629 . 8013 . 837–842 . 10.1038/s41586-024-07354-8 . free . 38693262 . 11111401 . 2024Natur.629..837R .
- Morton-Hayward . A. L. . Anderson . R. P. . Saupe . E. E. . Larson . G. . Cosmidis . J. G. . 2024 . Human brains preserve in diverse environments for at least 12 000 years . Proceedings of the Royal Society B: Biological Sciences . 291 . 2019 . 20232606 . 10.1098/rspb.2023.2606 . free . 38503334 . 10950470 .
- Vianey-Liaud . M. . Weppe . R. . Marivaux . L. . 2024 . Enigmatic rodents from Lavergne, a late middle Eocene (MP 16) fissure-filling of the Quercy Phosphorites (Southwest France) . Palæovertebrata . 47 . 2 . e1 . 10.18563/pv.47.2.e1 . 2024-05-16 .
- López-Antoñanzas . R. . Knoll . F. . Azar . D. . Kachacha . G. . Sanjuan . J. . Peláez-Campomanes . F. P. . 2024 . First Byzantinia from Afro-Arabia and the evolutionary history of extinct cricetodontine rodents investigated through Bayesian phylogenetic inference . Journal of Systematic Palaeontology . 22 . 1 . 2329078 . 10.1080/14772019.2024.2329078 . 2024JSPal..2229078L .
- Seiffert . E. R. . Heritage . S. . de Vries . D. . Sallam . H. M. . Vitek . N. S. . Aoron . E. . Princehouse . P. . 2024 . Oldest record of a crown anomaluroid rodent from sub-Saharan Africa: a new genus and species from the early Oligocene Topernawi formation of northern Kenya . Historical Biology: An International Journal of Paleobiology . 1–11 . 10.1080/08912963.2024.2370015 .
- Vianey-Liaud . M. . Lihoreau . F. . Solé . F. . Gernelle . K. . Vautrin . Q. . Bronnert . C. . Bourget . H. . Vidalenc . D. . Tabuce . R. . A revision of the late early Eocene mammal faunas from Mas de Gimel and Naples (Montpellier, Southern France) and the description of a new theridomorph rodent . 2024 . Geodiversitas . 46 . 10 . 387–422 . 10.5252/geodiversitas2024v46a10 .
- Halaçlar . K. . Alpagut . B. . Mayda . S. . Deng . T. . 2024 . A new systematic study on Hystrix findings from eastern Aegean area . Palaeoworld . 100873 . 10.1016/j.palwor.2024.100873 .
- Luccisano . V. . Valentin . X. . Garcia . G. . Lazzari . V. . 2024 . The rodent fauna from Prat de Cest (Aude, France) and its biochronological implications for the Early Miocene . Geobios . 84 . 45–63 . 10.1016/j.geobios.2023.12.005 . 2024Geobi..84...45L .
- Golovanov . S. E. . Zazhigin . V. S. . 2024 . Evolution and Taxonomy of the Pleistocene North Asian Zokors, Genus Siphneus (Myospalacidae, Rodentia, Mammalia) . Paleontological Journal . 58 . 3 . 353–362 . 10.1134/S0031030124700072 . 2024PalJ...58..353G .
- Viñola-López . L. W. . Almonte-Milán . J. N. . Luthra . A. . Bloch . J. I. . 2024 . New Quaternary mammals support regional endemism in western Hispaniola . Journal of Mammalian Evolution . 31 . 2 . 25 . 10.1007/s10914-024-09722-7 .
- Zack . S. P. . Penkrot . T. A. . 2024 . New material of Lophiparamys debequensis from the Willwood Formation (early Eocene) of Wyoming, including the first postcrania of the genus . Journal of Paleontology . 97 . 6 . 1293–1308 . 10.1017/jpa.2023.88 . free .
- Pang . L.B. . Chen . S.K. . Hu . X. . Wu . Y. . Wei . G.B. . 2024 . Fossil flying squirrels (Petauristinae, Sciuridae, Rodentia) from the Yumidong Cave in Wushan County, Chongqing, China . Fossil Record . 27 . 1 . 209–219 . 10.3897/fr.27.e115693 . free . 2024FossR..27..209P .
- Halaçlar . K. . Rummy . P. . Mayda . S. . Deng . T. . 2024 . A newly discovered Hystrix primigenia specimen from the Kemiklitepe collection at Ege University Natural History Museum: insights into paleobiogeography in Eurasia . Integrative Zoology . 10.1111/1749-4877.12820 . 38567525 . free .
- Daxner-Höck . G. . Winkler . V. . Kalthoff . D. C. . 2024 . The porcupine Hystrix parvae (Kretzoi, 1951) from the Late Miocene (Turolian, MN11) of Kohfidisch in Austria . Palaeobiodiversity and Palaeoenvironments . 10.1007/s12549-024-00616-3 . free .
- Bertrand . O. C. . Lang . M. M. . Ferreira . J. D. . Kerber . L. . Kynigopoulou . Z. . Silcox . M. T. . 2024 . The virtual brain endocast of Incamys bolivianus: insight from the neurosensory system into the adaptive radiation of South American rodents . Papers in Palaeontology . 10 . 3 . e1562 . 10.1002/spp2.1562 . free. 2024PPal...10E1562B .
- Vitek . N. S. . Hoeflich. J. C. . Magallanes. I. . Moran . S. M. . Narducci . R. E. . Perez . V. J. . Pirlo . J. . Riegler . M. S. . Selba . M. C. . Vallejo-Pareja . M. C. . Ziegler . M. J. . Granatosky . M. C. . Hulbert . R. C. . Bloch . J. I. . 2024 . An extinct north American porcupine with a South American tail . Current Biology . 34 . 12 . 2712–2718.e3 . 10.1016/j.cub.2024.04.069 . 38806055 .
- Madozzo Jaén . M. C. . Pérez . M. E. . Redescription of a small Caviidae (Rodentia: Hystricognathi) from the Neogene of northwestern Argentina and its systematic implications . 2024 . Comptes Rendus Palevol . 23 . 20 . 269–292 . 10.5852/cr-palevol2024v23a20 . free .
- Louis . A. . Tereza . H. . Aurélien . R. . Sophie . M. . Oldrich . F. . Ivan . H. . 2024 . Re-investigation of fossil Lemmini specimens from the early and Middle Pleistocene of Western and Central Europe: Evolutionary and paleoenvironmental implications . Palaeogeography, Palaeoclimatology, Palaeoecology . 641 . 112128 . 10.1016/j.palaeo.2024.112128 . free . 2024PPP...64112128L .
- Sen . S. . Geraads . D. . Pickford . M. . Vacant . R. . 2024 . Pliocene and Pleistocene lagomorphs (Mammalia) from Northwest Africa: new discoveries . Palaeobiodiversity and Palaeoenvironments . 104 . 2 . 381–417 . 10.1007/s12549-024-00605-6 . 2024PdPe..104..381S .
- Hovatter . B. T. . Chester . S. G. B. . Wilson Mantilla . G. P. . 2024 . New records of early Paleocene (earliest Torrejonian) plesiadapiforms from northeastern Montana, USA, provide a window into the diversification of stem primates . Journal of Human Evolution . 192 . 103500 . 10.1016/j.jhevol.2024.103500 . 38762383 .
- Beard . K. C. . Métais . G. . 2024 . Oldest record of Apatemyidae (Mammalia, Apatotheria) from Spain and the taxonomic status of Spanish paromomyids (Mammalia, Primatomorpha) . Journal of Vertebrate Paleontology . 43 . 3 . e2288651 . 10.1080/02724634.2023.2288651 .
- Crowell . J. W. . Wible . J. R. . Chester . S. G. B. . 2024 . Basicranial evidence suggests picrodontid mammals are not stem primates . Biology Letters . 20 . 1 . 20230335 . 10.1098/rsbl.2023.0335 . 38195058 . 10776232 . January 10, 2025 .
- Schap . J. A. . McGuire . J. L. . Lawing . A. M. . Manthi . F. K. . Short . R. A. . 2024 . Ecometric models of small mammal hypsodonty can estimate paleoprecipitation across eastern Africa . Palaeogeography, Palaeoclimatology, Palaeoecology . 643 . 112181 . 10.1016/j.palaeo.2024.112181 . free . 2024PPP...64312181S .
- López-Torres . S. . Bertrand . O. C. . Fostowicz-Frelik . Ł. . Lang . M. M. . Law . C. J. . San Martin-Flores . G. . Schillaci . M. A. . Silcox . M. T. . 2024 . The allometry of brain size in Euarchontoglires: clade-specific patterns and their impact on encephalization quotients . Journal of Mammalogy . 10.1093/jmammal/gyae084 . free .
- Figueiredo . R. . Bosselaers . M. . Póvoas . L. . Castanhinha . R. . Redescription of three fossil baleen whale skulls from the Miocene of Portugal reveals new cetotheriid phylogenetic insights . 2024 . PLOS ONE . 19 . 3 . e0298658 . 10.1371/journal.pone.0298658 . 38478506 . 10936793 . free . 2024PLoSO..1998658F .
- Meekin . S. . Fordyce . R. E. . Coste . A. . 2024 . Aureia rerehua, a new platanistoid dolphin from the Oligocene of New Zealand with a unique feeding method . Journal of the Royal Society of New Zealand . 1–20 . 10.1080/03036758.2024.2314505 . free .
- Hernández-Cisneros . A. E. . Schwennicke . T. . Rochín-Bañaga . H. . Tsai . C.H. . 2024 . Echericetus novellus n. gen. n. sp. (Cetacea, Mysticeti, Eomysticetidae), an Oligocene baleen whale from Baja California Sur, Mexico . Journal of Paleontology . 97 . 6 . 1309–1328 . 10.1017/jpa.2023.80 . free .
- Kimura . T. . Hasegawa . Y. . New Fossil Lipotid (Cetacea, Delphinida) from the Upper Miocene of Japan . 2024 . Paleontological Research . 28 . 4 . 1–23 . 10.2517/PR220027 .
- Tsai . Cheng-Hsiu . Goedert . James L. . Boessenecker . Robert W. . March 2024 . The oldest mysticete in the Northern Hemisphere . Current Biology . 34 . 8 . 1794–1800.e3 . 10.1016/j.cub.2024.03.011 . 38552627 . 2024CBio...34.1794T . 0960-9822.
- Kimura . T. . Hasegawa . Y. . A new species of Late Miocene balaenopterid, Incakujira fordycei, from Sacaco, Peru . Bulletin of Gunma Museum of Natural History . 2024 . 28 . 1–14 .
- Bianucci . G. . Benites-Palomino . A. M. . Collareta . A. . Bosio . G. . de Muizon . C. . Merella . M. . Di Celma . C. . Malinverno . E. . Urbina . M. . Lambert . O. . A new Late Miocene beaked whale (Cetacea, Odontoceti) from the Pisco Formation, and a revised age for the fossil Ziphiidae of Peru . 2024 . Bollettino della Società Paleontologica Italiana . 63 . 1 . 21–43 . 10.4435/BSPI.2024.10 .
- Tanaka . Y. . Nakagawa . R. . 2024 . A new platanistoid (Odontoceti: Squalodelphinidae) from the Early Miocene of Japan . Journal of Systematic Palaeontology . 22 . 1 . 2378783 . 10.1080/14772019.2024.2378783 .
- Benites-Palomino . Aldo . Aguirre-Fernández . Gabriel . Baby . Patrice . Ochoa . Diana . Altamirano . Ali . Flynn . John J. . Sánchez-Villagra . Marcelo R. . Tejada . Julia V. . De Muizon . Christian . Salas-Gismondi . Rodolfo . 2024 . The largest freshwater odontocete: A South Asian river dolphin relative from the proto-Amazonia . Science Advances . 10 . 12 . eadk6320 . 10.1126/sciadv.adk6320 . 38507490 . free . 2024SciA...10K6320B .
- Corrie . Joshua E. . Fordyce . R. Ewan . 2024-01-31 . A new genus and species of kekenodontid from the late Oligocene of New Zealand with comments on the evolution of tooth displacement in Cetacea . Journal of the Royal Society of New Zealand . en . 1–16 . 10.1080/03036758.2023.2297696 . 0303-6758. free .
- van Vliet . H. J. . Bosselaers . M. E. J. . Munsterman . D. K. . Dijkshoorn . M. L. . de Groen . J. J. . Post . K. . 2024 . A vertebra of a small species of Pachycetus from the North Sea and its inner structure and vascularity compared with other basilosaurid vertebrae from the same site . PeerJ . 12 . e16541 . 10.7717/peerj.16541 . free . 38774542 . 11107809 .
- Motani . R. . Pyenson . N. D. . 2024 . Downsizing a heavyweight: factors and methods that revise weight estimates of the giant fossil whale Perucetus colossus . PeerJ . 12 . e16978 . 10.7717/peerj.16978 . 38436015 . 10909350 . free .
- Tsai . C.-H. . Kimura . T. . Hasegawa . Y. . 2024 . Coexistence of Oligocene toothed and baleen-assisted mysticetes in the northwestern Pacific . Fossil Record . 27 . 1 . 95–100 . 10.3897/fr.27.e111567 . free . 2024FossR..27...95T .
- Nobile . F. . Collareta . A. . Perenzin . V. . Fornaciari . E. . Giusberti . L. . Bianucci . G. . 2024 . Dawn of the Delphinidans: New Remains of Kentriodon from the Lower Miocene of Italy Shed Light on the Early Radiation of the Most Diverse Extant Cetacean Clade . Biology . 13 . 2 . 114 . 10.3390/biology13020114 . free . 38392334 . 10887126 .
- Sanks . J. . Racicot . R. . 2024 . Predicting ecology and hearing sensitivities in Parapontoporia—An extinct long-snouted dolphin . The Anatomical Record . 10.1002/ar.25538 . free . 39010732 .
- Peredo . C. M. . Pyenson . N. . Uhen . M. D. . 2022 . Lateral palatal foramina do not indicate baleen in fossil whales . Scientific Reports . 12 . 1 . 11448 . 10.1038/s41598-022-15684-8 . 35794235 . 9259611 . 2022NatSR..1211448P . free .
- Ekdale . E. G. . El Adli . J. J. . McGowen . M. R. . Deméré . T. A. . Lanzetti . A. . Berta . A. . Springer . M. S. . Boessenecker . R. W. . Gatesy . J. . 2024 . Lateral palatal foramina are not widespread in Artiodactyla and imply baleen in extinct mysticetes . Scientific Reports . 14 . 1 . 10174 . 10.1038/s41598-024-60673-8 . free . 38702346 . 11068900 . 2024NatSR..1410174E .
- Hampe . O. . von der Hocht . F. . 2024 . The first cetacean from the early Oligocene of the SW German Mainz Basin: a probable cheek tooth of a mysticete (Mammalia: Cetacea) . PalZ . 98 . 1 . 161–174 . 10.1007/s12542-023-00676-4 . free . 2024PalZ...98..161H .
- Tanaka . Y. . A feeding organ the basihyal and thyrohyal tells which size of prey do true baleen whales (Cetacea, Chaeomysticeti) eat . 2024 . Palaeontologia Electronica . 27 . 1 . 27.1.a8 . 10.26879/1311 . free .
- Boessenecker . R. W. . Richards . M. D. . 2024 . A review of New Zealand Eomysticetidae (Mammalia, Cetacea) and implications for the evolution of baleen whales: new specimens, functional anatomy, and phylogeny . Journal of the Royal Society of New Zealand . 1–15 . 10.1080/03036758.2023.2277739 . free .
- Marx . F. G. . Coste . A. . Richards . M. D. . Palin . J. M. . Fordyce . R. E. . 2024 . Strontium isotopes reveal a globally unique assemblage of Early Miocene baleen whales . Journal of the Royal Society of New Zealand . 1–11 . 10.1080/03036758.2023.2278732 . free .
- Tanaka . Y. . Motoyama . I. . Sakurai . K. . A New Late Early to Early Middle Miocene Fossil Baleen Whale Aff. Isanacetus laticephalus Specimen from Hokkaido, Japan . 2024 . Paleontological Research . 28 . 4 . 481–490 . 10.2517/PR230029 .
- Aiken . M. . Gladilina . E. . Çakirlar . C. . Telizhenko . S. . Bejenaru . L. . Bukhsianidze . M. . Olsen . M. T. . Gol'din . P. . 2024 . Earliest Records of Holocene Cetaceans in the Black Sea . Journal of Quaternary Science . 39 . 4 . 585–591 . 10.1002/jqs.3609 . free . 2024JQS....39..585A .
- Bai . B. . Theodor . J. M. . Wang . Y-Q. . Meng . J. . 2024 . New Early and Middle Eocene artiodactyls from the Erlian Basin, Inner Mongolia, China . Journal of Vertebrate Paleontology . 43 . 3 . e2294006 . 10.1080/02724634.2023.2294006 .
- Ríos . M. . Abbas . S. G. . Khan . M. A. . Solounias . N. . A new giraffid Bramiscus micros nov. gen. nov. sp. (Ruminantia, Giraffidae) from the Miocene of northern Pakistan . 2024 . Palaeontologia Electronica . 27 . 2 . 27.2.a29 . 10.26879/1243 . free .
- Wu . Y. . Wang . S.-Q. . Liang . Z.-Y. . Guo . D.-G. . Sun . B.-Y. . Liu . L. . Duan . K. . Chen . G.-Z. . 2024 . First report of Hispanodorcas from the Late Miocene of China . Vertebrata PalAsiatica . 62 . 2 . 135–155 . 10.19615/j.cnki.2096-9899.240123 .
- Rios . M. . Solounias . N. . 2024 . Lyra sherkhana gen. et sp. nov., a new genus and species of giraffid from the Miocene of the Siwaliks (Pakistan) . Journal of Vertebrate Paleontology . e2365423 . 10.1080/02724634.2024.2365423 .
- Shreero . M. . Welsh . E. . Marriott . K. . Prothero . D. R. . 2024 . A tiny deer with big implications: a new genus (Santuccimeryx) from Badlands National Park helps bridge the gap between Oligocene and Miocene Leptomerycidae (Mammalia, Artiodactyla) . Proceedings of the South Dakota Academy of Science . 102 . 59–81 .
- Ducrocq . S. . Yamee . C. . Rugbumrung . M. . Chaimanee . Y. . Jaeger . J.-J. . New remains of Siamochoerus banmarkensis Ducrocq, Chaimanee, Suteethorn & Jaeger, 1998 (Artiodactyla: Suidae) from the late Eocene of Thailand . 2024 . Comptes Rendus Palevol . 23 . 19 . 257–268 . 10.5852/cr-palevol2024v23a19 . free .
- McKenzie . S. . Arranz . S. G. . Almécija . S. . De Miguel . D. . Alba . D. M. . 2024 . Tetraconodontines and suines (Artiodactyla: Suidae) from the earliest Vallesian site of Castell de Barberà (Vallès-Penedès Basin, NE Iberian Peninsula) . Journal of Mammalian Evolution . 31 . 1 . 7 . 10.1007/s10914-023-09695-z . 267420479 .
- Iannucci . A. . 2024 . The Occurrence of Suids in the Post-Olduvai to Pre-Jaramillo Pleistocene of Europe and Implications for Late Villafranchian Biochronology and Faunal Dynamics . Quaternary . 7 . 1 . 11 . 10.3390/quat7010011 . free .
- Martino . R. . Sianis . P. D. . Estraviz-López . D. . Rotarori . F. M. . Conti . S. . Ríos . M. . 2024 . Disentangling morphological variation in metapodials of giraffids: Modern and traditional approaches . Organisms Diversity & Evolution . 24 . 2 . 201–213 . 10.1007/s13127-024-00647-w . 2024ODivE..24..201M .
- Laskos . K. . Kostopoulos . D. S. . 2024 . A review of Palaeogiraffa (Giraffidae, Mammalia) from the Vallesian of the Eastern Mediterranean . Geobios . 84 . 25–43 . 10.1016/j.geobios.2023.12.002 . 2024Geobi..84...25L .
- Ríos . M. . Cantero . E. . Martino . R. . Estraviz-López . D. . Crespo . V. D. . Lohmann . P. . Morales . J. . 2024 . Description of newly discovered cranial remains of Decennatherium rex juveniles from Batallones-10 (Late Miocene, Iberian Peninsula) . Historical Biology: An International Journal of Paleobiology . 1–8 . 10.1080/08912963.2024.2376359 .
- Laskos . K. . Kostopoulos . D. S. . 2024 . On the last European giraffe, Palaeotragus inexspectatus (Mammalia: Giraffidae); new remains from the Early Pleistocene of Greece and a review of the species . Zoological Journal of the Linnean Society . 10.1093/zoolinnean/zlae056 . free .
- Strani . F. . Di Folco . F. . Iurino . D. A. . Cherin . M. . Pushkina . D. . Rook . L. . Sardella . R. . Azanza . B. . DeMiguel . D. . 2024 . Neuroanatomy and palaeoecology of the Early Pleistocene Dama-like deer from Pirro Nord (Apulia, Italian Peninsula) . Quaternary Science Reviews . 334 . 108719 . 10.1016/j.quascirev.2024.108719 . free . 2024QSRv..33408719S .
- Baker . K. H. . Gray . H. W. I. . Lister . A. M. . Spassov . N. . Welch . A. J. . Trantalidou . K. . De Cupere . B. . Bonillas . E. . De Jong . M. . Çakırlar . C. . Sykes . N. . Hoelzel . A. R. . 2024 . Ancient and modern DNA track temporal and spatial population dynamics in the European fallow deer since the Eemian interglacial . Scientific Reports . 14 . 1 . 3015 . 10.1038/s41598-023-48112-6 . 38346983 . 10861457 . free . 2024NatSR..14.3015B .
- Baker . K. H. . Miller . H. . Doherty . S. . Gray . H. W. I. . Daujat . J. . Çakırlar . C. . Spassov . N. . Trantalidou . K. . Madgwick . R. . Lamb . A. L. . Ameen . C. . Atici . L. . Baker . P. . Beglane . F. . Benkert . H. . Bendrey . R. . Binois-Roman . A. . Carden . R. F. . Curci . A. . De Cupere . B. . Detry . C. . Gál . E. . Genies . C. . Kunst . G. K. . Liddiard . R. . Nicholson . R. . Perdikaris . S. . Peters . J. . Pigière . F. . Pluskowski . A. G. . Sadler . P. . Sicard . S. . Strid . L. . Sudds . J. . Symmons . R. . Tardio . K. . Valenzuela . A. . van Veen . M. . Vuković . S. . Weinstock . J. . Wilkens . B. . Wilson . R. J. A. . Evans . J. A. . Hoelzel . A. R. . Sykes . N. . 2024 . The 10,000-year biocultural history of fallow deer and its implications for conservation policy . Proceedings of the National Academy of Sciences of the United States of America . 121 . 8 . e2310051121 . 10.1073/pnas.2310051121 . 38346198 . 10895352 . free . 2024PNAS..12110051B .
- Vislobokova . I. A. . 2024 . Eucladoceros orientalis (Artiodactyla, Cervidae) from the Lower Pleistocene of the Taurida Cave, Crimea, and Its Systematic Position . Paleontological Journal . 58 . 4 . 483–494 . 10.1134/S0031030124600379 .
- Greiner . E. . El-Shaarawi . W. . Orlikoff . E. . Sherwood . R. . O'Brien . K. . Kingston . J. . Dental mesowear from the Tugen Hills Succession (Baringo Basin, Kenya) demonstrates increase in mixed-feeding behavior of late Miocene to Plio-Pleistocene Bovidae . 2024 . Palaeogeography, Palaeoclimatology, Palaeoecology . 639 . 112058 . 10.1016/j.palaeo.2024.112058 . 2024PPP...63912058G . 267457587 .
- Naz . S. . Sultana . T. . Sultana . S. . Yasin . R. . Samiullah . K. . 2024 . New fossil remains of bovids from the Middle Siwaliks of Punjab, Pakistan . Historical Biology: An International Journal of Paleobiology . 1–18 . 10.1080/08912963.2023.2300639 . 267240217 .
- Bai . W. . Dong . W. . Zhang . L. . 2024 . The first confirmation of North American extinct shrub-ox (Euceratherium, Artiodactyla, Mammalia) in the Early Pleistocene of northern China . Quaternary Science Reviews . 336 . 108777 . 10.1016/j.quascirev.2024.108777 . 2024QSRv..33608777B .
- Anderson . S. C. . Kovarovic . K. . Barr . W. A. . 2024 . A 3D geometric morphometric analysis of the bovid distal humerus, with special reference to Rusingoryx atopocranion (Pleistocene, Eastern Africa) . Journal of Anatomy . 245 . 3 . 451–466 . 10.1111/joa.14062 . free . 38733157 . 11306763 .
- Hofman-Kamińska . E. . Merceron . G. . Bocherens . H. . Boeskorov . G. G. . Krotova . O. O. . Protopopov . A. V. . Shpansky . A. V. . Kowalczyk . R. . 2024 . Was the steppe bison a grazing beast in Pleistocene landscapes? . Royal Society Open Science . 11 . 8 . 240317 . 10.1098/rsos.240317 . 11321853 . free . 39144492 .
- Hardy . F. C. . Rowland . S. M. . 2024 . Stable isotopic analysis of fossil Bison tooth enamel indicates flexible dietary ecology across Pleistocene North America . Quaternary Science Reviews . 334 . 108741 . 10.1016/j.quascirev.2024.108741 . 2024QSRv..33408741H .
- Pickford . M. . De Muizon . C. . 2024 . The affinities of Afrophoca libyca from basal Middle Miocene of Gebel Zelten, Libya . Acta Palaeontologica Polonica . 69 . 2 . 243–247 . 10.4202/app.01152.2024 . free .
- Fidalgo . D. . Madurell-Malapeira . J. . Martino . R. . Pandolfi . L. . Rosas . A. . 2024 . An Updated Review of The Quaternary Hippopotamus Fossil Records from the Iberian Peninsula . Quaternary . 7 . 1 . 4 . 10.3390/quat7010004 . free . 10261/345195 . free .
- Romano . M. . Manucci . F. . Bellucci . L. . 2024 . Body mass estimate and in-vivo reconstruction of Hippopotamus antiquus from Figline, Upper Valdarno (Tuscany) . Historical Biology: An International Journal of Paleobiology . 1–12 . 10.1080/08912963.2024.2380358 .
- Martino . R. . Marra . F. . Ríos . M. . Pandolfi . L. . 2024 . The Middle Pleistocene Hippopotamus from Malagrotta (Latium, Italy): New Data and Future Perspectives . Quaternary . 7 . 1 . 13 . 10.3390/quat7010013 . free .
- Martino . R. . Marra . F. . Beccari . V. . Ríos . M. . Pandolfi . L. . 2024 . Middle Pleistocene Hippopotamus amphibius (Mammalia, Hippopotamidae) from southern Europe: Implications for morphology, morphometry and biogeography . Quaternary Science Reviews . 331 . 108613 . 10.1016/j.quascirev.2024.108613 . 2024QSRv..33108613M .
- Mecozzi . B. . Iannucci . A. . Arzarello . M. . Carpentieri . M. . Moncel . M.-H. . Peretto . C. . Sala . B. . Sardella . R. . 2024 . Middle Pleistocene Hippopotamuses from the Italian Peninsula: An Overview . Quaternary . 7 . 2 . 20 . 10.3390/quat7020020 . free .
- Patel . S. . Nanda . A. C. . Orliac . M. . Thewissen . J. G. M. . Cranial anatomy of Indohyus indirae (Raoellidae), an artiodactyl from the Eocene of India, and its implications for raoellid biology . 2024 . Palaeontologia Electronica . 27 . 1 . 27.1.a21 . 10.26879/1307 . free .
- Waqas . M. . Smith . T. . Rana . R. S. . Orliac . M. J. . 2024 . The cranium and dentition of Khirtharia (Artiodactyla, Raoellidae): new data on a stem taxon to Cetacea . Journal of Mammalian Evolution . 31 . 2 . 24 . 10.1007/s10914-024-09720-9 .
- Jiangzuo . Q. . Wang . X. . Law . C. J. . Su . D. . Jia . Y. . Li . S. . Fu . J. . Kuang . Z. . Cao . J. . Zou . B. . Hou . S. . Wang . S. . Deng . T. . Ji . X. . 2024 . Presence of Cernictis and Lutravus (Ictonychinae, Mustelidae, Carnivora) in eastern Asia and the dispersal of Ictonychinae during the Late Miocene . Journal of Systematic Palaeontology . 22 . 1 . 2348032 . 10.1080/14772019.2024.2348032 . 2024JSPal..2248032J .
- de Bonis . L. . Ekrt . B. . Kunstmüllerová . L. . Martínek . K. . Rapprich . V. . Wagner . J. . New early aeluroid carnivoran (Mammalia, Carnivora, Feliformia) from the classical palaeontological locality Valeč, the Czech Republic . 2024 . Geodiversitas . 46 . 1 . 1–12 . 10.5252/geodiversitas2024v46a1 . 266964792 .
- Salesa . M. J. . Gamarra . J. . Siliceo . G. . Antón . M. . Morales . J. . 2024 . Unraveling the diversity of early felines: a new genus of Felinae (Carnivora, Felidae) from the Middle Miocene of Madrid (Spain) . Journal of Vertebrate Paleontology . 43 . 3 . e2288924 . 10.1080/02724634.2023.2288924 .
- Dewaele . L. . de Muizon . C. . A new monachine seal (Monachinae, Phocidae, Mammalia) from the Miocene of Cerro La Bruja (Ica department, Peru) . 2024 . Geodiversitas . 46 . 3 . 31–100 . 10.5252/geodiversitas2024v46a3 . 10067/2059970151162165141 .
- Boisville . M. . Chatar . N. . Kohno . N. . 2024 . New species of Ontocetus (Pinnipedia: Odobenidae) from the Lower Pleistocene of the North Atlantic shows similar feeding adaptation independent to the extant walrus (Odobenus rosmarus) . PeerJ . 12 . e17666 . 10.7717/peerj.17666 . free .
- Hafed . A. B. . Koretsky . I. A. . Nance . J. R. . Koper . L. . Rahmat . S. J. . 2024 . New Neogene fossil phocid postcranial material from the Atlantic (USA) . Historical Biology: An International Journal of Paleobiology . 1–20 . 10.1080/08912963.2024.2304593 . 267654593 .
- Boessenecker . R. W. . Poust . A. W. . Boessenecker . S. J. . Churchill . M. . 2024 . Tusked walruses (Carnivora: Odobenidae) from the Miocene–Pliocene Purisima Formation of Santa Cruz, California (U.S.A.): a new species of the toothless walrus Valenictus and the oldest records of Odobeninae and Odobenini . Journal of Vertebrate Paleontology . 43 . 3 . e2296567 . 10.1080/02724634.2023.2296567 .
- Kargopoulos . N. . Valenciano . A. . Kampouridis . P. . Vasile . Ş. . Ursachi . L. . Răţoi . B. . The carnivoran record from the Neogene of eastern Romania . 2024 . Rivista Italiana di Paleontologia e Stratigrafia . 130 . 2 . 331–371 . 10.54103/2039-4942/22194 . free .
- Kargopoulos . N. . Valenciano . A. . Abella . J. . Morlo . M. . Konidaris . G. E. . Kampouridis . P. . Lechner . T. . Böhme . M. . The carnivoran guilds from the Late Miocene hominid locality of Hammerschmiede (Bavaria, Germany) . 2024 . Geobios . 10.1016/j.geobios.2024.02.003 . free .
- Jiangzuo . Q.-G. . Gao . Y. . Valenciano . A. . Lu . D. . Wang . S. . 2024 . A possible new amphicyonid from the Miocene of the Linxia Basin . Vertebrata PalAsiatica . 62 . 2 . 156–164 . 10.19615/j.cnki.2096-9899.240320 .
- de Latorre . D. V. . Marshall . C. R. . 2024 . Evolutionary allometry of the canid baculum (Carnivora: Mammalia) . Biological Journal of the Linnean Society . 10.1093/biolinnean/blae048 . free.
- Pickford . M. . Morales . J. . Mocke . H. . Gommery . D. . Senut . B. . Bat-eared fox (Canidae, Otocyon) from the Pleistocene of northern Namibia . 2024 . Communications of the Geological Survey of Namibia . 27 . 47–65 .
- Thabard . C. . Fourvel . J.-B. . Reassessment of the taxonomic status of Canis antiquus (Carnivora, Canidae) from the Early Pleistocene site of Minnaar's Cave (Gauteng, South Africa) . 2024 . Geobios . 10.1016/j.geobios.2024.02.005 .
- Bartolini-Lucenti . S. . Cirilli . O. . Melchionna . M. . Raia . P. . Tseng . Z. J. . Flynn . J. J. . Rook . L. . 2024 . Virtual reconstruction of the Canis arnensis type (Canidae, Mammalia) from the Upper Valdarno Basin (Italy, Early Pleistocene) . Scientific Reports . 14 . 1 . 8303 . 10.1038/s41598-024-53073-5 . 38594298 . 11004169 . free . 2024NatSR..14.8303B .
- Gojobori . J. . Arakawa . N. . Xiaokaiti . X. . Matsumoto . Y. . Matsumura . S. . Hongo . H. . Ishiguro . N. . Terai . Y. . 2024 . Japanese wolves are most closely related to dogs and share DNA with East Eurasian dogs . Nature Communications . 15 . 1 . 1680 . 10.1038/s41467-024-46124-y . 38396028 . 10891106 . free . 2024NatCo..15.1680G .
- Jiangzuo . Q. . Huang . Z. . Yu . C. . Tong . H. . Zhang . B. . Hu . H. . Wang . D. . Wang . S. . Liu . J. . 2024 . Dental shape evolution of the giant panda (Ailuropoda, Ursidae) during the Quaternary . Historical Biology: An International Journal of Paleobiology . 1–7 . 10.1080/08912963.2024.2324446 .
- Villalba de Alvarado . M. . Crégut-Bonnoure . E. . Arsuaga . J. L. . Collado Giraldo . H. . van der Made . J. . Gómez-Olivencia . A. . Pleistocene Asian black bear (Ursus thibetanus Cuvier, 1823) in the Iberian Peninsula: new evidence and a complete review . Quaternary Science Reviews . 2024 . 325 . 108385 . 10.1016/j.quascirev.2023.108385 . 2024QSRv..32508385V . 266804633 .
- Duñó-Iglesias . P. . Ramírez-Pedraza . I. . Rivals . F. . Prilepskaya . N. E. . Belyaev . R. I. . Baryshnikov . G. F. . Dental microwear analysis of Kudaro cave bears: Insights into dietary evolution from the Middle to late Pleistocene . 2024 . Palaeogeography, Palaeoclimatology, Palaeoecology . 653 . 112417 . 10.1016/j.palaeo.2024.112417 . free .
- Kastelic Kovačič . U. . Debeljak . I. . Potočnik . D. . Ogrinc . N. . Zupančič . N. . A novel ontogeny-related sampling of dental tissues for stable isotopes interpretation of the paleobiology of the cave bear . Quaternary Science Reviews . 2024 . 325 . 108481 . 10.1016/j.quascirev.2023.108481 . 2024QSRv..32508481K . 266831528 . free .
- Marciszak . A. . Mackiewicz . P. . Borówka . R. K. . Capalbo . C. . Chibowski . P. . Gąsiorowski . M. . Hercman . H. . Cedro . B. . Kropczyk . A. . Gornig . W. . Moska . P. . Nowakowski . D. . Ratajczak-Skrzatek . U. . Sobczyk . A. . Sykut . M. T. . Zarzecka-Szubińska . K. . Kovalchuk . O. . Barkaszi . Z. . Stefaniak . K. . Mazza . P. P. A. . 2024 . Fate and preservation of the late Pleistocene cave bears from Niedźwiedzia Cave in Poland, through taphonomy, pathology, and geochemistry . Scientific Reports . 14 . 1 . 9775 . 10.1038/s41598-024-60222-3 . free . 38684693 . 11059340 . 2024NatSR..14.9775M .
- Charters . D. . Brown . R. P. . Abrams . G. . Di Modica . K. . Pirson . S. . De Groote . I. . Ghiraldi . L. . Meloro . C. . 2024 . Mandibular ecomorphology in the genus Ursus (Ursidae, Carnivora): relevance for the palaeoecological adaptations of cave bears (U. spelaeus) from Scladina cave . Historical Biology: An International Journal of Paleobiology . 1–15 . 10.1080/08912963.2024.2377703 . free .
- Faggi . A. . Bartolini-Lucenti . S. . Madurell-Malapeira . J. . Abramov . A. V. . Puzachenko . A. Y. . Jiangzuo . Q. . Peiran . L. . Rook . L. . 2024 . Quaternary Eurasian badgers: Intraspecific variability and species validity . Journal of Mammalian Evolution . 31 . 3 . 10.1007/s10914-023-09696-y . 267217919 .
- Marciszak . A. . Nagel . D. . One or two species? Revision of fossil martens from the late Early Pleistocene sites Deutsch Altenburg 2 and 4 (Austria) . 2024 . Palaeontologia Electronica . 27 . 2 . 27.2.a32 . 10.26879/1397 . free .
- Faggi . A. . Bartolini-Lucenti . S. . Rook . L. . New insights on the enigmatic otters from the Late Miocene of Tuscany: Tyrrhenolutra maremmana nov. comb. (Lutrinae, Mustelidae, Carnivora), with a phylogeny of bunodont otters . 2024 . Rivista Italiana di Paleontologia e Stratigrafia . 130 . 2 . 259–284 . 10.54103/2039-4942/22479 . free .
- Park . T. . Burin . G. . Lazo-Cancino . D. . Rees . J. P. G. . Rule . J. . Slater . G. . Cooper . N. . 2024 . Charting the Course of Pinniped Evolution: insights from molecular phylogeny and fossil record integration . Evolution . 78 . 7 . 1212–1226 . 10.1093/evolut/qpae061 . free . 38644688 .
- Esteban . J. M. . Martín-Serra . A. . Pérez-Ramos . A. . Rybczynski . N. . Jones . K. . Figueirido . B. . 2024 . The influence of the land-to-sea macroevolutionary transition on vertebral column disparification in Pinnipedia . Proceedings of the Royal Society B: Biological Sciences . 291 . 2020 . 20232752 . 10.1098/rspb.2023.2752 . free . 38593849 . 11003777 .
- Rule . J. P. . Burin . G. . Park . T. . 2024 . A quantitative test of the "Ecomorphotype Hypothesis" for fossil true seals (Family Phocidae) . PeerJ . 12 . e17592 . 10.7717/peerj.17592 . free . 38912040 . 11193399 .
- Valenzuela-Toro . A. M. . Gutstein . C. S. . Suárez . M. E. . 2024 . Exceptional morphological and taxonomic diversity of early seals (Phocidae) from the Atacama Region, Chile . Historical Biology: An International Journal of Paleobiology . 1–23 . 10.1080/08912963.2023.2301671 . 267215554 .
- Barrett . P. Z. . Hopkins . S. S. B. . 2024 . Mosaic evolution underlies feliform morphological disparity . Proceedings of the Royal Society B: Biological Sciences . 291 . 2028 . 20240756 . 10.1098/rspb.2024.0756 . 39137889 . 11321862 . August 14, 2025 .
- Shelbourne . C. D. . Lautenschlager . S. . 2024 . Morphological diversity of saber-tooth upper canines and its functional implications . The Anatomical Record . 10.1002/ar.25458 . 38646928 . free .
- Lipecki . G. . Marciszak . A. . Gornig . W. . Wolsan . M. . 2024 . First record of Megaviverra carpathorum (Kretzoi and Fejfar, 1982) from Poland within Eurasian context . Hystrix . 35 . 1 . 10.4404/hystrix-00703-2024 .
- van der Hoek . J. . Werdelin . L. . 2024 . A hyaena on stilts: comparison of the limb morphology of Ictitherium ebu (Mammalia: Hyaenidae) from the Late Miocene of Lothagam, Turkana Basin, Kenya with extant Canidae and Hyaenidae . PeerJ . 12 . e17405 . 10.7717/peerj.17405 . free . 38873642 . 11172688 .
- Pérez-Claros . J. A. . Unravelling the origin of the brown hyena (Parahyena brunnea) and its evolutionary and paleoecological implications for the Pachycrocuta lineage . 2024 . Palaeontologia Electronica . 27 . 1 . 27.1.a18 . 10.26879/1372 . free .
- Catalano . G. . Iurino . D. A. . Modi . A. . Paijmans . J. L. A. . Sardella . R. . Sineo . L. . Caramelli . D. . Barlow . A. . 2024 . Palaeogenomic data from a Late Pleistocene coprolite clarifies the phylogenetic position of Sicilian cave hyena . Quaternary Science Reviews . 340 . 108859 . 10.1016/j.quascirev.2024.108859 . 2024QSRv..34008859C .
- Chatar . N. . Michaud . M. . Tamagnini . D. . Fischer . V. . Evolutionary patterns of cat-like carnivorans unveil drivers of the sabertooth morphology . 2024 . Current Biology . 34 . 11 . 2460–2473.e4 . 10.1016/j.cub.2024.04.055 . free . 38759651 .
- Figueirido . B. . Tucker . S. . Lautenschlager . S. . 2024 . Comparing cranial biomechanics between Barbourofelis fricki and Smilodon fatalis: Is there a universal killing-bite among saber-toothed predators? . The Anatomical Record . 10.1002/ar.25451 . 38613218 . free . 10630/31032 . free .
- Salesa . M. J. . Hernández . B. . Marín . P. . Siliceo . G. . Martínez . I. . Antón . M. . García-Real . M. I. . Pastor . J. F. . García-Fernández . R. A. . 2024 . New insights on the ecology and behavior of Machairodus aphanistus (Carnivora, Felidae, Machairodontinae) through the paleopathological study of the fossil sample from the Late Miocene (Vallesian, MN 10) of Cerro de los Batallones (Torrejón de Velasco, Madrid, Spain) . Journal of Mammalian Evolution . 31 . 2 . 21 . 10.1007/s10914-024-09721-8 . free .
- Moretti . J. A. . Flores . D. . Bell . C. J. . Godwin . W. . Hartstone-Rose . A. . Lewis . P. J. . 2024 . The scimitar-cat Homotherium from the submerged continental shelf of the Gulf Coast of Texas . The Anatomical Record . 10.1002/ar.25461 . 38654480 .
- Stimpson . C. M. . 2024 . Siwalik sabrecats: review and revised diagnosis of Megantereon fossils from the foothills of the Himalaya . Royal Society Open Science . 11 . 5 . 231788 . 10.1098/rsos.231788 . 38720790 . 11076117 . free . 2024RSOS...1131788S .
- Tura-Poch . C. . Bartolini-Lucenti . S. . Jiangzuo . Q.-G. . Prat-Vericat . M. . Martínez-Navarro . B. . Rook . L. . Madurell-Malapeira . J. . The disappearance of European dirk-toothed cats . 2024 . Palaeoworld . 10.1016/j.palwor.2024.05.003 . free .
- Tseng . Z. J. . Bending performance changes during prolonged canine eruption in saber-toothed carnivores: A case study of Smilodon fatalis . 2024 . The Anatomical Record . 10.1002/ar.25447 . 38588019 . free .
- Chatar . N. . Boman . R. . Fischer . V. . Segura . V. . Julémont . C. . Tseng . Z. J. . 2024 . Growing sabers: Mandibular shape and biomechanical performance trajectories during the ontogeny of Smilodon fatalis . The Anatomical Record . 10.1002/ar.25504 . free . 38801020 .
- Deutsch . A. R. . Berger . A. . Martens . L. L. . Witt . B. R. . Smith . R. L. J. . Hartstone-Rose . A. . 2024 . Myological and osteological approaches to gape and bite force reconstruction in Smilodon fatalis . The Anatomical Record . 10.1002/ar.25529 . free. 38943271 .
- Serdyuk . N. V. . Lavrov . A. V. . Madurell-Malapeira . J. . Kemelman . E. L. . Gimranov . D. O. . Lopatin . A. V. . 2024 . The resilience of an injured Early Pleistocene Lynx from Taurida сave (Crimea) . Historical Biology: An International Journal of Paleobiology . 1–9 . 10.1080/08912963.2024.2383711 .
- Jiangzuo . Q. . Wang . Y. . Madurell-Malapeira . J. . Bartolini Lucenti . S. . Li . S. . Wang . S. . Li . Z. . Yang . R. . Jia . Y. . Zhang . L. . Chen . S. . Jin . C. . Wang . Y. . Liu . J. . 2024 . Massive early Middle Pleistocene cheetah from eastern Asia shed light onto the evolution of Acinonyx in Eurasia . Quaternary Science Reviews . 332 . 108661 . 10.1016/j.quascirev.2024.108661 . 2024QSRv..33208661J .
- Lopatin . A. V. . 2024 . Plecotus macrobullaris sarmaticus subsp. nov. (Vespertilionidae, Chiroptera) from the Early Pleistocene of Crimea . Doklady Biological Sciences . 516 . 1 . 42–49 . 10.1134/S0012496624700972 . 38700813 .
- Burtner . A. E. . Grossnickle . D. M. . Santana . S. E. . Law . C. J. . Gliding toward an understanding of the origin of flight in bats . 2024 . PeerJ . 12 . e17824 . 10.7717/peerj.17824 . 39071138 . 11283779 . free .
- Jones . M. F. . Beard . K. C. . Simmons . N. B. . 2024 . Phylogeny and systematics of early Paleogene bats . Journal of Mammalian Evolution . 31 . 2 . 18 . 10.1007/s10914-024-09705-8 .
- Giannini . N. P. . Cannell . A. . Amador . L. I. . Simmons . N. B. . Palaeoatmosphere facilitates a gliding transition to powered flight in the Eocene bat, Onychonycteris finneyi . 2024 . Communications Biology . 7 . 1 . 365 . 10.1038/s42003-024-06032-9 . 38532113 . 10966098 . free .
- Lopatin . A. V. . 2024 . A New Species of Anourosorex (Soricidae, Lipotyphla) from the Pleistocene of Vietnam . Paleontological Journal . 58 . 3 . 363–370 . 10.1134/S0031030124700060 . 2024PalJ...58..363L .
- Cailleux . F. . van den Hoek Ostende . L. W. . Joniak . P. . 2024 . The Late Miocene Talpidae (Eulipotyphla, Mammalia) from the Pannonian Region, Slovakia . Journal of Paleontology . 98 . 1 . 128–151 . 10.1017/jpa.2023.95 . 2024JPal...98..128C .
- Averianov . A. O. . Voyta . L. L. . 2024 . Putative Triassic stem mammal Tikitherium copei is a Neogene shrew . Journal of Mammalian Evolution . 31 . 10 . 10.1007/s10914-024-09703-w . 268170801 .
- Furió . M. . Minwer-Barakat . R. . García-Alix . A. . 2024 . No place for Pliocene tourists with Ockham's razor in the pocket: Comment on Crespo et al. (2023) . Palaeoworld . 10.1016/j.palwor.2024.02.002 . free .
- Omelko . V. E. . Tiunov . M. P. . 2024 . Late Quaternary shrews (Soricomorpha: Soricidae) from Priamurye (Russian Far East) according to data from Koridornaya Cave: species diversity and stratigraphical aspects . Palaeobiodiversity and Palaeoenvironments . 104 . 2 . 419–434 . 10.1007/s12549-024-00601-w . 2024PdPe..104..419O . 268178584 .
- Lu . Xiaokang . Deng . Tao . Sun . Boyang . Paul . Rummy . Hou . Yemao . Sun . Danhui . Li . Shijie . 2024-06-10 . A new rhinocerotoids (Mammalia, Perissodactyla) from the Late Oligocene of Linxia Basin, China . Historical Biology . en . 1–9 . 10.1080/08912963.2024.2357606 . 0891-2963.
- Sun . D. . Deng . T. . Wang . S. . 2024 . New materials of plesiacerathere (Perissodactyla, Rhinocerotidae) from the late Early Miocene of Northern China . PeerJ . 12 . e16822 . 10.7717/peerj.16822 . 38313009 . 10838079 . free .
- Kampouridis . P. . Hartung . J. . Lechner . T. S. . Kargopoulos . N. . Böhme . M. . 2024 . Disparate occurrences of a chalicotheriine and a schizotheriine chalicothere (Mammalia, Chalicotheriidae) at the Late Miocene hominid locality Hammerschmiede (Germany) . PalZ . 98 . 2 . 313–329 . 10.1007/s12542-024-00685-x . free . 2024PalZ...98..313K .
- Affholder . O. . Antoine . P.-O. . Beck . R. M. D. . 2024 . The "Diahot Tooth" is a Miocene rhinocerotid fossil brought by humans to New Caledonia . Journal of Mammalian Evolution . 31 . 3 . 27 . 10.1007/s10914-024-09723-6 .
- Hullot . M. . Martin . C. . Blondel . C. . Rössner . G. E. . 2024 . Life in a Central European warm-temperate to subtropical open forest: Paleoecology of the rhinocerotids from Ulm-Westtangente (Aquitanian, Early Miocene, Germany) . The Science of Nature . 111 . 1 . 10 . 10.1007/s00114-024-01893-w . 38353735 . free . 2024SciNa.111...10H .
- Li . S. . Sanisidro . O. . Wang . S. . Yang . R. . Deng . T. . 2024 . New materials of Pliorhinus ringstroemi from the Linxia Basin (Late Miocene, eastern Asia) and their taxonomical and evolutionary implications . Journal of Mammalian Evolution . 31 . 6 . 10.1007/s10914-023-09698-w . 267352083 .
- Ma . J. . Wang . S. . Deng . T. . 2024 . When the woolly rhinoceroses roamed East Asia: a review of isotopic paleoecology of the genus Coelodonta from the Tibetan Plateau to northern Eurasia . Frontiers in Ecology and Evolution . 12 . 1377000 . 10.3389/fevo.2024.1377000 . free .
- Fordham . D. A. . Brown . S. C. . Canteri . E. . Austin . J. J. . Lomolino . M. V. . Haythorne . S. . Armstrong . E. . Bocherens . H. . Manica . A. . Rey-Iglesia . A. . Rahbek . C. . Nogués-Bravo . D. . Lorenzen . E. D. . 2024 . 52,000 years of woolly rhinoceros population dynamics reveal extinction mechanisms . Proceedings of the National Academy of Sciences of the United States of America . 121 . 24 . e2316419121 . 10.1073/pnas.2316419121 . 38830089 . 11181021 . December 3, 2024 . 2024PNAS..12116419F .
- Killingsworth . S. R. . MacFadden . B. J. . Species occurrences of Mio-Pliocene horses (Equidae) from Florida: sampling, ecology, or both? . 2024 . Paleobiology . 50 . 2 . 364–375 . 10.1017/pab.2023.35 . free . 2024Pbio...50..364K .
- Cirilli . O. . Semprebon . G. M. . Bernor . R. L. . Paleodietary reconstruction of Equus simplicidens from the Hagerman Horse Quarry (Idaho, USA) highlights high abrasive habits in North American fossil equids during the Pliocene . 2024 . Palaeogeography, Palaeoclimatology, Palaeoecology . 650 . 112376 . 10.1016/j.palaeo.2024.112376 . 2024PPP...65012376C .
- Gelfo . J. N. . López . G. M. . Bond . M. . New insights on the anatomy, paleobiology, and biostratigraphy of Xenungulata (Mammalia) from the Paleogene of South America . 2024 . Palaeontologia Electronica . 27 . 2 . 27.2.a30 . 10.26879/1360 . free .
- Weaver . L. N. . Crowell . J. W. . Chester . S. G. B. . Lyson . T. R. . 2024 . Skull of a new periptychid mammal from the lower Paleocene Denver Formation of Colorado (Corral Bluffs, El Paso County) . Journal of Mammalian Evolution . 31 . 2 . 16 . 10.1007/s10914-024-09716-5 . free .
- Kramarz . A. . Bellosi . E. . Bond . M. . Forasiepi . A. . Gaillard . C. . Krause . M. . 2024 . A new South American archaic ungulate and new insight for the early diversification of the South American native ungulates . Historical Biology: An International Journal of Paleobiology . 1–22 . 10.1080/08912963.2024.2380810 .
- Faurby . S. . Silvestro . D. . Werdelin . L. . Antonelli . A. . 2024 . Reliable biogeography requires fossils: insights from a new species-level phylogeny of extinct and living carnivores . Proceedings of the Royal Society B: Biological Sciences . 291 . 2028 . 20240473 . 10.1098/rspb.2024.0473 . free . 39106959 . 11303028 .
- Serio . C. . Brown . R. P. . Clauss . M. . Meloro . C. . 2024 . Three-dimensional geometric morphometric analyses of humerus ecomorphology: New perspectives for paleohabitat reconstruction in carnivorans and ungulates . The Anatomical Record . 10.1002/ar.25553 . 39126145 . free .
- Badin . A. C. . Corona . A. . Schmidt . G. I. . Perea . D. . Ubilla . M. . 2024 . New reports, updates, and additional comments about Neobrachytherium ullumense Soria, 2001 (Litopterna, Proterotheriidae) in the Late Miocene of Uruguay and Argentina . Journal of Mammalian Evolution . 31 . 2 . 23 . 10.1007/s10914-024-09713-8 .
- Schmidt . G. I. . Armella . M. A. . Bonini . R. A. . 2024 . Updated record of Proterotheriidae (Litopterna, Mammalia) from the late Neogene of northwestern Argentina . Historical Biology: An International Journal of Paleobiology . 1–24 . 10.1080/08912963.2024.2359471 .
- Armella . M. A. . García-López . D. A. . Croft . D. A. . 2024 . Cranial anatomy and petrosal morphology of a juvenile individual of Neobrachytherium (Proterotheriidae, Litopterna, Mammalia) . American Museum Novitates . 4023 . 1–60 . 10.1206/4023.1 . 2246/7370 .
- Corona . A. . Rinderknecht . A. . Jones . W. . Badín . A. C. . Ubilla . M. . Perea . D. . 2024 . Body mass estimation of the extinct South American native ungulate Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae): testing classical predictive models . Historical Biology: An International Journal of Paleobiology . 1–11 . 10.1080/08912963.2024.2379030 .
- Lobo . L. S. . Gelfo . J. N. . Azevedo . S. A. K. . 2024 . The phylogeny of Macraucheniidae (Mammalia, Panperissodactyla, Litopterna) at the genus level . Journal of Systematic Palaeontology . 22 . 1 . 2364201 . 10.1080/14772019.2024.2364201 . 2024JSPal..2264201L .
- Solórzano . A. . Núñez-Flores . M. . Rodríguez-Serrano . E. . 2024 . The rise and fall of notoungulates: How Andean uplift, available land area, competition, and depredation driven its diversification dynamics . Gondwana Research . 135 . 116–132 . 10.1016/j.gr.2024.08.002 .
- Deraco . V. . Abdala . F. . García-López . D. A. . 2024 . Craniodental ontogenetic variation in the leontiniid Coquenia bondi Deraco, Powell, & López, 2008 (Notoungulata, Toxodontia) from the Eocene of Northwestern Argentina . Historical Biology: An International Journal of Paleobiology . 1–13 . 10.1080/08912963.2024.2308221 . 267509500 .
- Sanz-Pérez . D. . Tomassini . R. L. . Montalvo . C. I. . Zurita . A. . Hernández Fernández . M. . Domingo . L. . 2024 . Stable isotope analysis evidences dietary changes in toxodontids (Mammalia, Notoungulata) across the Neogene-Quaternary from Argentina . Spanish Journal of Palaeontology . 10.7203/sjp.28828 . free .
- Ferrero . B. S. . Schmidt . G. I. . Costamagna . D. . Miño-Boiliniv. Á. R. . Zurita . A. E. . Quiñones . S. I. . Cuadrelli . F. . Luna . C. A. . Solís . N. . Candela . A. M. . 2024 . First record of Posnanskytherium (Notoungulata, Toxodontidae) in the late Neogene of eastern Puna, Argentina . Journal of Mammalian Evolution . 31 . 5 . 10.1007/s10914-023-09700-5 . 267360848 .
- Luna . C. A. . Barbosa . F. H. S. . Gonzalez . R. . Miño-Boilini . Á. R. . Repetto . C. . Zurita . A. E. . 2024 . Bone diseases in a Pleistocene South American native ungulate species: the case of Toxodon platensis Owen, 1837 (Mammalia, Notoungulata, Toxodontidae) . Journal of Quaternary Science . 10.1002/jqs.3601 . 267555703 .
- Costamagna . D. . Ferrero . B. S. . Giri . F. . Ribeiro . A. M. . 2024 . Study of the shape and size in lower molars of Toxodon platensis (Mammalia: Toxodontidae) of the Late Pleistocene of South America . Geobios . 10.1016/j.geobios.2024.05.005 .
- Fernández-Monescillo . M. . Tauber . A. A. . Beyond extinction: Uncovering morphological aspects of the last typotherid population (Mesotherium cristatum) and the unexpected body mass decrease . Quaternary Science Reviews . 2024 . 325 . 108479 . 10.1016/j.quascirev.2023.108479 . 2024QSRv..32508479F . 266730484 .
- Armella . M. A. . Alonso . G. E. . García-López . D. A. . Croft . D. A. . Muruaga . C. M. . 2024 . Systematics and biostratigraphic implications of a new notoungulate assemblage (Mammalia, Pan-Perissodactyla) from the India Muerta Formation (Late Miocene), Northwestern Argentina . Publicación Electrónica de la Asociación Paleontológica Argentina . 24 . 1 . 44–70 . 10.5710/PEAPA.29.01.2024.469 . free .
- Web site: 瑞浪市化石博物館研究報告 . 2024-04-01 . www.jstage.jst.go.jp . ja.
- Núñez-Blasco . A. . Zurita . A. E. . Bonini . R. A. . Miño-Boilini . Á. R. . Quiñones . S. I. . Toriño . P. . Zamorano . M. . Georgieff . S. . 2024 . Plohophorini glyptodonts (Xenarthra, Cingulata) from the late Neogene of northwestern Argentina. Insight into their diversity, evolutionary history, and paleobiogeography . Journal of Mammalian Evolution . 31 . 3 . 33 . 10.1007/s10914-024-09726-3 .
- Asakura . Y. . Oliveira . É. V. . Histovariability of cingulate osteoderms from Brazilian Pleistocene . 2024 . PalZ . 10.1007/s12542-024-00695-9 . 2024PalZ..tmp...21A .
- Luna . C. A. . Barasoain . D. . Vezzosi . R. I. . Ercoli . M. D. . Zurita . A. E. . Pool . R. R. . 2024 . Memories of the blows: severe soft-tissue injuries in caudal vertebrae of Panochthus Burmeister (Xenarthra, Glyptodontidae) . Journal of Mammalian Evolution . 31 . 3 . 29 . 10.1007/s10914-024-09729-0 .
- Lee . N. J. . Flynn . J. J. . Wyss . A. R. . Croft . D. A. . Early Miocene sloth (Folivora) remains from Pampa Castillo, southern Chile, including a natural cranial endocast . 2024 . Ameghiniana . 61 . 3 . 148–169 . 10.5710/AMGH.26.06.2024.3603 .
- Babcock . L. E. . Nomenclatural history of Megalonyx Jefferson, 1799 (Mammalia, Xenarthra, Pilosa, Megalonychidae) . 2024 . ZooKeys . 1195 . 297–308 . 10.3897/zookeys.1195.117999 . 38532771 . 10964019 . free . 2024ZooK.1195..297B .
- Chahud . A. . Pereira . G. C. . Costa . P. R. O. . Okumura . M. . A new record of ground sloth in the Ribeira de Iguape valley, southeastern Brazil . 2024 . Carnets Geol. . 24 . 4 . 83–89 . 10.2110/carnets.2024.2404 . free .
- Barbosa . F. H. S. . Silva . R. C. . Alves-Silva . L. . Liparini . A. . Araújo-Júnior . H. I. . 2024 . Integrating paleopathology and paleoecology to unravel the lifestyle of the Pleistocene sloth Nothrotherium maquinense . Journal of Mammalian Evolution . 31 . 3 . 30 . 10.1007/s10914-024-09728-1 .
- Varela . L. . Tambusso . S. . Fariña . R. . 2024 . Femora nutrient foramina and aerobic capacity in giant extinct xenarthrans . PeerJ . 12 . e17815 . 10.7717/peerj.17815 . free . 39131616 . 11316464 .
- Lopatin . A. V. . Averianov . A. O. . 2024 . New Early Cretaceous zalambdalestid stem placental mammal from Mongolia and evolution of Zalambdalestidae . Journal of Vertebrate Paleontology . e2384601 . 10.1080/02724634.2024.2384601 .
- Arnold . P. . Janiszewska . K. . Li . Q. . O'Connor . J. K. . Fostowicz-Frelik . Ł. . 2024 . The Late Cretaceous eutherian Zalambdalestes reveals unique axis and complex evolution of the mammalian neck . Science Bulletin . 69 . 11 . 1767–1775 . 10.1016/j.scib.2024.04.027 . 38702276 . free . 2024SciBu..69.1767A .
- Wible . J. R. . Bertrand . O. C. . 2024 . Basicranial Anatomy of Leptictis haydeni Leidy, 1868 (Mammalia, Eutheria, Leptictidae) . Annals of Carnegie Museum . 90 . 1 . 1–36 . 10.2992/007.090.0101 .
- Velazco . P. M. . Buczek . A. J. . Hoffman . E. . Hoffman . D. K. . O'Leary . M. A. . Novacek . M. J. . 2022 . Combined data analysis of fossil and living mammals: a Paleogene sister taxon of Placentalia and the antiquity of Marsupialia . Cladistics . 38 . 3 . 359–373 . 10.1111/cla.12499 . 35098586 . 246429311 .
- Brady . P. L. . Castrellon Arteaga . A. . López-Torres . S. . Springer . M. S. . 2024 . The effects of ordered multistate morphological characters on phylogenetic analyses of eutherian mammals . Journal of Mammalian Evolution . 31 . 3 . 28 . 10.1007/s10914-024-09727-2 . free .
- Serio . C. . Brown . R. P. . Clauss . M. . Meloro . C. . 2024 . Morphological disparity of mammalian limb bones throughout the Cenozoic: the role of biotic and abiotic factors . Palaeontology . 67 . 4 . e12720 . 10.1111/pala.12720 . free .
- Martin . G. M. . Novo . N. M. . González Ruiz . L. R. . Tejedor . M. F. . 2024 . New metatherians from Collon Cura Formation at Cerro Zeballos (Middle Miocene), Chubut province, Argentina . Historical Biology: An International Journal of Paleobiology . 1–18 . 10.1080/08912963.2024.2367558 .
- Gernelle . K. . Billet . G. . Gheerbrant . E. . Godinot . M. . Marandat . B. . Ladevèze . S. . Tabuce . R. . 2024 . Taxonomy and evolutionary history of peradectids (Metatheria): New data from the early Eocene of France . Journal of Mammalian Evolution . 31 . 3 . 31 . 10.1007/s10914-024-09724-5 .
- Kerr . I. A. R. . Camens . A. B. . van Zoelen . J. D. . Worthy . T. H. . Prideaux . G. J. . 2024 . Systematics and palaeobiology of kangaroos of the late Cenozoic genus Protemnodon (Marsupialia, Macropodidae) . Megataxa . 11 . 1 . 1–261 . 10.11646/megataxa.11.1.1 . free .
- Carneiro . L. M. . Goin . F. J. . Bampi . H. . Silva . R. C. . Rangel . C. C. . Guimarães . B. M. G. . Arêas . M. R. . 2024 . A tiny-sized Herpetotheriidae (Mammalia, Metatheria) from the Itaboraí Basin (early Eocene), Brazil: Paleobiogeographic and systematic implications for Herpetotheriidae . Journal of South American Earth Sciences . 144 . 105016 . 10.1016/j.jsames.2024.105016 . 2024JSAES.14405016C .
- Carneiro . L. M. . Bampi . H. . Rangel . C. C. . Guimarães . B. M. G. . Silva . R. C. . Oliveira . É. V. . 2024 . A new metatherian (Mammalia) from the Itaboraí basin (Early Eocene), Brazil: Implications to trophic niche partitioning between large-sized "didelphoid-like" metatherians . Journal of South American Earth Sciences . 139 . 104895 . 10.1016/j.jsames.2024.104895 . 2024JSAES.13904895C .
- Gaillard . C. . Forasiepi . A. M. . Tarquini . S. D. . MacPhee . R. D. E. . Ladevèze . S. . 2024 . Cranium of Sipalocyon externus (Metatheria, Sparassodonta) with remarks on the paleoneurology of hathliacynids and insights into the Early Miocene sparassodonts of Patagonia, Argentina . Swiss Journal of Palaeontology . 143 . 1 . 20 . 10.1186/s13358-024-00312-x . free . 2024SwJP..143...20G .
- Wessels . W. . van de Weerd . A. A. . Marković . Z. . 2024 . Marsupials (Herpetotheriids) from the late Palaeogene of south-east Serbia . Palaeobiodiversity and Palaeoenvironments . 104 . 2 . 363–380 . 10.1007/s12549-024-00600-x . free . 2024PdPe..104..363W .
- Carneiro . L. M. . Zanesco Ferreira . T. . Bergqvist . L. P. . Goin . F. J. . Guedes . F. R. . Agnes . Á. . Oliveira . É. V. . New material of Carolocoutoia ferigoloi (Mammalia, Marsupialia, Didelphimorphia): Systematic affinities and dietary inferences . Journal of South American Earth Sciences . 2024 . 134 . 104777 . 10.1016/j.jsames.2023.104777 . 2024JSAES.13404777C . 266729954 .
- Hu . Q. . Seymour . R. S. . Snelling . E. P. . Wells . R. T. . 2024 . Blood flow rate to the femur of extinct kangaroos implies a higher locomotor intensity compared to living hopping macropods . Journal of Mammalian Evolution . 31 . 2 . 10.1007/s10914-023-09701-4 . free . 2263/94439 . free .
- Murphy . P. J. . Rowe . A. J. . Rayfield . E. J. . Janis . C. M. . 2024 . Finite element analysis of kangaroo astragali: A new angle on the ankle . Journal of Morphology . 285 . 5 . e21707 . 10.1002/jmor.21707 . 38721681 . free .
- Kerr . I. A. R. . Prideaux . G. J. . Re-evaluating the generic affinity of Silvaroo buloloensis (Marsupialia, Macropodidae) from the late Pliocene of Papua New Guinea . 2024 . Alcheringa: An Australasian Journal of Palaeontology . 48 . 2 . 384–401 . 10.1080/03115518.2024.2319043 . free . 2024Alch...48..384K .
- Koungoulos . L. G. . Flannery . T. F. . O'Connor . S. . First record of Protemnodon (Macropodidae: Marsupialia) from Pleistocene lowland New Guinea . 2024 . Alcheringa: An Australasian Journal of Palaeontology . 48 . 1 . 127–133 . 10.1080/03115518.2024.2304340 . free . 2024Alch...48..127K .
- Jones . B. . Janis . C. M. . 2024 . Hop, walk or bound? Limb proportions in kangaroos and the probable locomotion of the extinct genus Protemnodon . Journal of Mammalian Evolution . 31 . 2 . 26 . 10.1007/s10914-024-09725-4 . free .
- Janis . C. M. . 2024 . Who was the real sabertooth predator: Thylacosmilus or Thylacoleo? . The Anatomical Record . 10.1002/ar.25444 . 38597514 . free .
- Flannery . Timothy F. . Tim Flannery . McCurry . Matthew R. . Rich . Thomas H. . Tom Rich . Vickers-Rich . Patricia . Patricia Vickers-Rich . Smith . Elizabeth T. . Helgen . Kristofer M. . 2024-05-26 . A diverse assemblage of monotremes (Monotremata) from the Cenomanian Lightning Ridge fauna of New South Wales, Australia . . 48 . 2 . en . 319–337 . 10.1080/03115518.2024.2348753 . 0311-5518. free . 2024Alch...48..319F .
- Bajpai . S. . Rautela . A. . Yadav . R. . Wilson Mantilla . G. P. . 2024 . The first eutriconodontan mammal from the Cretaceous (Maastrichtian) of India . Journal of Vertebrate Paleontology . 43 . 4 . e2312234 . 10.1080/02724634.2024.2312234 .
- Zhang . H. . Zhou . C.-F. . Luo . Z.-X. . 2024 . A new symmetrodont mammal from the Early Cretaceous Jehol Biota of Ningcheng Basin, Inner Mongolia, Northeast China . Acta Palaeontologica Polonica . 69 . 2 . 315–327 . 10.4202/app.01154.2024 . free .
- Chimento . N. R. . Agnolín . F. L. . García-Marsà . J. . Manabe . M. . Tsuihiji . T. . Novas . F. E. . 2024 . A large therian mammal from the Late Cretaceous of South America . Scientific Reports . 14 . 1 . 2854 . 10.1038/s41598-024-53156-3 . 38310138 . 10838296 . free . 2024NatSR..14.2854C .
- Connelly . B. E. . Cardozo . M. S. . Montgomery . J. D. . Rougier . G. W. . 2024 . New mammals from the Upper Cretaceous Allen Formation (Patagonia, Argentina) and reassessment of meridiolestidan diversity . Cretaceous Research . 162 . 105935 . 10.1016/j.cretres.2024.105935 . 2024CrRes.16205935C .
- Ashbaugh . A. J. . Scott . C. S. . Wilson Mantilla . G. P. . Theodor . J. M. . 2024 . Species discrimination in the multituberculate Mesodma Jepsen, 1940 (Mammalia, Allotheria): considerations of size, shape, and form . Journal of Paleontology . 97 . 6 . 1282–1292 . 10.1017/jpa.2023.76 . free .
- Magallanes . I. . Beard . K. C. . Martin . T. . Luo . Z.-X. . A new dryolestid fossil from the Late Jurassic illuminates molar root structure of dryolestids . 2024 . Journal of Vertebrate Paleontology . e2322740 . 10.1080/02724634.2024.2322740 .
- Huang . E. J. . Wilson . J. D. . Bhullar . B.-A. S. . Bever . G. S. . 2024 . High-precision body mass predictors for small mammals: a case study in the Mesozoic . Palaeontology . 67 . 2 . e12692 . 10.1111/pala.12692 . 2024Palgy..6712692H .
- Newham . E. . Corfe . I. J. . Brewer . P. . Bright . J. A. . Fernandez . V. . Gostling . N. J. . Hoffmann . S. . Jäger . K. R. K. . Kague . E. . Lovric . G. . Marone . F. . Panciroli . E. . Schneider . P. . Schultz . J. A. . Suhonen . H. . Witchell . A. . Gill . P. G. . Martin . T. . The origins of mammal growth patterns during the Jurassic mammalian radiation . 2024 . Science Advances . 10 . 32 . eado4555 . 10.1126/sciadv.ado4555 . free . 39110800 .
- Quintero . I. . Lartillot . N. . Morlon . H. . 2024 . Imbalanced speciation pulses sustain the radiation of mammals . Science . 384 . 6699 . 1007–1012 . 10.1126/science.adj2793 . 38815022 . 2024Sci...384.1007Q .
- Shupinski . A. B. . Wagner . P. J. . Smith . F. A. . Lyons . S. K. . 2024 . Unique functional diversity during early Cenozoic mammal radiation of North America . Proceedings of the Royal Society B: Biological Sciences . 291 . 2026 . 20240778 . 10.1098/rspb.2024.0778 . 38955231 . 11286128 . July 3, 2025 .
- Jones . M. E. . Travouillon . K. . Janis . C. M. . 2024 . Proportional variation and scaling in the hindlimbs of hopping mammals, including convergent evolution in argygrolagids and jerboas . Journal of Mammalian Evolution . 31 . 8 . 10.1007/s10914-023-09699-9 . free .
- Smiley . T. M. . Bahadori . A. . Rasbury . E. T. . Holt . W. E. . Badgley . C. . Tectonic extension and paleoelevation influence mammalian diversity dynamics in the Basin and Range Province of western North America . 2024 . Science Advances . 10 . 25 . eadn6842 . 10.1126/sciadv.adn6842 . free . 38896622 . 11186493 . 2024SciA...10N6842S .
- Calede . J. J. . Constenius . K. N. . Famoso . N. A. . Kehl . W. A. . Discovery of Oligocene-aged mammals in Glacier National Park (Kishenehn Formation), Montana . 2024 . Geodiversitas . 46 . 9 . 367–386 . 10.5252/geodiversitas2024v46a9 .
- Arney . I. . Locke . E. M. . Miller . E. R. . Nengo . I. O. . Stable isotope (ẟ13C, ẟ18O) paleoecology of the late Early Miocene mammalian fauna from Buluk, Kenya . 2024 . Palaeontologia Electronica . 27 . 1 . 27.1.a19 . 10.26879/1335 . free .
- Rivals . F. . Belyaev . R. I. . Basova . V. B. . Prilepskaya . N. E. . A tale from the Neogene savanna: Paleoecology of the Hipparion fauna in the northern Black Sea region during the Late Miocene . 2024 . Palaeogeography, Palaeoclimatology, Palaeoecology . 642 . 112133 . 10.1016/j.palaeo.2024.112133 . free . 2024PPP...64212133R .
- Nascimento . J. C. S. . Blanco . F. . Domingo . M. S. . Cantalapiedra . J. L. . Pires . M. M. . 2024 . The reorganization of predator–prey networks over 20 million years explains extinction patterns of mammalian carnivores . Ecology Letters . 27 . 6 . e14448 . 10.1111/ele.14448 . 38814285 . 2024EcolL..27E4448N .
- Wilson . O. E. . Sánchez . R. . Chávez-Aponte . E. . Carrillo-Briceño . J. D. . Saarinen . J. . 2024 . Application of herbivore ecometrics to reconstruct terrestrial palaeoenvironments in Falcón, Venezuela . Palaeogeography, Palaeoclimatology, Palaeoecology . 112397 . 10.1016/j.palaeo.2024.112397 . free .
- Freitas-Oliveira . R. . Lima-Ribeiro . M. . Faleiro . F. V. . Jardim . L. . Terribile . L. C. . 2024 . Temperature changes affected mammal dispersal during the Great American Biotic Interchange . Journal of Mammalian Evolution . 31 . 2 . 20 . 10.1007/s10914-024-09717-4 .
- Freitas-Oliveira . R. . Lima-Ribeiro . M. S. . Terribile . L. C. . 2024 . No evidence for niche competition in the extinction of the South American saber-tooth species . npj Biodiversity . 3 . 1 . 11 . 10.1038/s44185-024-00045-7 . free . 2024npjBD...3...11F .
- Rowan . J. . Du . A. . Lundgren . E. J. . Faith . J. T. . Beaudrot . L. . Campisano . C. J. . Joordens . J. C. . Lazagabaster . I. A. . Locke . E. M. . Smail . I. E. . Reed . K. E. . Kamilar . J. M. . 2024 . Long-term biotic homogenization in the East African Rift System over the last 6 million years of hominin evolution . Nature Ecology & Evolution . 1–9 . 10.1038/s41559-024-02462-0 . 39009848 .
- Hanon . R. . Fourvel . J.-B. . Sambo . R. . Maringa . N. . Steininger . C. . Zipfel . B. . Braga . J. . 2024 . New fossil Bovidae (Mammalia: Artiodactyla) from Kromdraai Unit P, South Africa and their implication for biochronology and hominin palaeoecology . Quaternary Science Reviews . 331 . 108621 . 10.1016/j.quascirev.2024.108621 . 2024QSRv..33108621H .
- Fillion . E. N. . Harrison . T. . 2024 . Hominin turnover at Laetoli is associated with vegetation change: Multiproxy evidence from the large herbivore community . Journal of Human Evolution . 191 . 103546 . 10.1016/j.jhevol.2024.103546 . 38795630 . 2024JHumE.19103546F .
- Foister . T. I. F. . Liu . L. . Saarinen . J. . Tallavaara . M. . Zhang . H. . Žliobaitė . I. . 2024 . Quantifying heterogeneity of hominin environments in and out of Africa using herbivore dental traits . Quaternary Science Reviews . 337 . 108791 . 10.1016/j.quascirev.2024.108791 . free . 2024QSRv..33708791F .
- Iannucci . A. . 2024 . Ecospace occupancy and disparity in Pleistocene large carnivorans of Europe and implications for hominin dispersal and ecological role . Quaternary Science Reviews . 329 . 108562 . 10.1016/j.quascirev.2024.108562 . free . 2024QSRv..32908562I .
- Carrillo-Briceño . J. D. . Ruiz-Ramoni . D. . Sánchez . R. . Jaimes . A. . Chávez-Aponte . E. . Prevosti . F. J. . Segura . V. . Carlini . A. A. . Garbé . L. . Tombret . O. . Zazzo . A. . Sánchez-Villagra . M. R. . 2024 . Cauca: megafaunal and felid fossils (Mammalia) from a Pleistocene site in northwest Venezuela . Fossil Record . 27 . 1 . 187–207 . 10.3897/fr.27.e119967 . free . 2024FossR..27..187C .
- Andrade . L. C. . Dantas . M. A. T. . Oliveira . É. V. . 2024 . Tracking the Past: Isotopic Paleoecology (δ13C, δ18O) of the Late Pleistocene megafauna from northeast of South America . Journal of South American Earth Sciences . 104917 . 10.1016/j.jsames.2024.104917 .
- Spagnolo . V. . Crezzini . J. . Falguères . C. . Tombret . O. . Garbe . L. . Bahain . J.-J. . Giaccio . B. . Arrighi . S. . Aureli . D. . Eckberg . I. . Boscato . P. . Ronchitelli . A. . Boschin . F. . 2024 . Grotta Grande (southern Italy). Disentangling the Neandertal and carnivore interaction in a short-term palimpsest at the last glacial onset (∼116-109 ka) . Quaternary Science Reviews . 331 . 108628 . 10.1016/j.quascirev.2024.108628 . free . 2024QSRv..33108628S . 11365/1259496 . free .
- Hodgkins . J. . Bertacchi . A. . Knudson . K. J. . Rasbury . T. . Giblin . J. I. . Gordon . G. . Anbar . A. . Turq . A. . Sandgathe . D. . Keller . H. M. . Britton . K. . McPherron . S. P. . 2024 . Late Pleistocene prey mobility in southwestern France and its implications for reconstructing Neandertal ranging behaviors . Quaternary Science Reviews . 331 . 108610 . 10.1016/j.quascirev.2024.108610 . 2024QSRv..33108610H . 2164/23440 . free .
- O'Brien . K. . Podkovyroff . K. . Fernandez . D. P. . Tryon . C. A. . Cerling . T. E. . Ashioya . L. . Faith . J. T. . 2024 . Limited herbivore migration during the Last Glacial Period of Kenya . Nature Ecology & Evolution . 8 . 6 . 1191–1198 . 10.1038/s41559-024-02413-9 . 38802495 . 2024NatEE...8.1191O .
- Ben-Dor . M. . Barkai . R. . 2024 . A matter of fat: Hunting preferences affected Pleistocene megafaunal extinctions and human evolution . Quaternary Science Reviews . 331 . 108660 . 10.1016/j.quascirev.2024.108660 . 2024QSRv..33108660B .
- Bampi . H. . Pires-Oliveira . J. C. . Loyola-Bartra . O. . Lima-Ribeiro . M. S. . 2024 . Language bias, not knowledge shortfall, underestimates the evidence of Megafauna Kill Sites in South America . Journal of South American Earth Sciences . 146 . 105078 . 10.1016/j.jsames.2024.105078 .
- Žliobaitė . I. . 2024 . Laws of macroevolutionary expansion . Proceedings of the National Academy of Sciences of the United States of America . 121 . 33 . e2314694121 . 10.1073/pnas.2314694121 . 11331108 . free .