2-ring explained

In mathematics, a categorical ring is, roughly, a category equipped with addition and multiplication. In other words, a categorical ring is obtained by replacing the underlying set of a ring by a category. For example, given a ring R, let C be a category whose objects are the elements of the set R and whose morphisms are only the identity morphisms. Then C is a categorical ring. But the point is that one can also consider the situation in which an element of R comes with a "nontrivial automorphism".[1]

This line of generalization of a ring eventually leads to the notion of an En-ring.

See also

References

External links

Notes and References

  1. Lurie, J. . Derived Algebraic Geometry . V: Structured Spaces . 2004.