A normalized 1s Slater-type function is a function which is used in the descriptions of atoms and in a broader way in the description of atoms in molecules. It is particularly important as the accurate quantum theory description of the smallest free atom, hydrogen. It has the form
\psi1s(\zeta,r-R)=\left(
\zeta3 | |
\pi |
\right)1e-\zeta.
It is a particular case of a Slater-type orbital (STO) in which the principal quantum number n is 1. The parameter
\zeta
A hydrogen-like atom or a hydrogenic atom is an atom with one electron. Except for the hydrogen atom itself (which is neutral) these atoms carry positive charge
e(Z-1)
Z
\hat{H
Z
\psi1s=\left(
\zeta3 | |
\pi |
\right)0.50e-\zeta
\zeta
The energy of a hydrogenic system can be exactly calculated analytically as follows :
E1s=
\langle\psi1s|\hat{H | |
e|\psi |
1s\rangle}{\langle\psi1s|\psi1s\rangle}
\langle\psi1s|\psi1s\rangle |
=1
E1s=\langle\psi1s|-
\nabla2 | |
2 |
-
Z | |
r |
|\psi1s\rangle
E1s=\langle\psi1s|-
\nabla2 | |
2 |
|\psi1s\rangle+\langle\psi1s|-
Z | |
r |
|\psi1s\rangle
E1s=\langle\psi1s|-
1 | |
2r2 |
\partial | |
\partialr |
\left(r2
\partial | |
\partialr |
\right)|\psi1s\rangle+\langle\psi1s|-
Z | |
r |
|\psi1s\rangle
\psi1s=\left(
\zeta3 | |
\pi |
\right)0.50e-\zeta
E1s=\left\langle\left(
\zeta3 | |
\pi |
\right)0.50e-\zeta\right|\left.-\left(
\zeta3 | |
\pi |
\right)0.50e-\zeta\left[
-2r\zeta+r2\zeta2 | |
2r2 |
\right]\right\rangle+\langle\psi1s|-
Z | |
r |
|\psi1s\rangle
E1s=
\zeta2 | |
2 |
-\zetaZ.
The optimum value for
\zeta
\zeta
dE1s | |
d\zeta |
=\zeta-Z=0
\zeta=Z.
The following energy values are thus calculated by using the expressions for energy and for the Slater exponent.
Hydrogen : H
Z=1
\zeta=1
E1s=
E1s=
E1s=
Gold : Au(78+)
Z=79
\zeta=79
E1s=
E1s=
E1s=
Hydrogenic atomic systems are suitable models to demonstrate the relativistic effects in atomic systems in a simple way. The energy expectation value can calculated by using the Slater orbitals with or without considering the relativistic correction for the Slater exponent
\zeta
\zetarel
\zetarel=
Z | |
\sqrt{1-Z2/c2 |
rel | |
E | |
1s |
=-(c2+Z\zeta)+\sqrt{c4+Z2\zeta2}
Atomic system | Z | \zetanon | \zetarel |
|
\zetanon |
\zetarel | ||||||||||||||||||
H | 1 | 1.00000000 | 1.00002663 | −0.50000000 Eh | −0.50000666 Eh | −0.50000666 Eh | ||||||||||||||||||
−13.60569850 eV | −13.60587963 eV | −13.60587964 eV | ||||||||||||||||||||||
−313.75450000 kcal/mol | −313.75867685 kcal/mol | −313.75867708 kcal/mol | ||||||||||||||||||||||
Au(78+) | 79 | 79.00000000 | 96.68296596 | −3120.50000000 Eh | −3343.96438929 Eh | −3434.58676969 Eh | ||||||||||||||||||
−84913.16433850 eV | −90993.94255075 eV | −93459.90412098 eV | ||||||||||||||||||||||
−1958141.83450000 kcal/mol | −2098367.74995699 kcal/mol | −2155234.10926142 kcal/mol |