Its Coxeter symbol is 142, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequences.
The rectified 142 is constructed by points at the mid-edges of the 142 and is the same as the birectified 241, and the quadrirectified 421.
These polytopes are part of a family of 255 (28 - 1) convex uniform polytopes in 8 dimensions, made of uniform polytope facets and vertex figures, defined by all non-empty combinations of rings in this Coxeter-Dynkin diagram: .
bgcolor=#e7dcc3 colspan=2 | 142 | |
---|---|---|
Type | Uniform 8-polytope | |
Family | 1k2 polytope | |
Schläfli symbol | ||
Coxeter symbol | 142 | |
Coxeter diagrams | ||
7-faces | 2400: 240 132 2160 141 | |
6-faces | 106080: 6720 122 30240 131 69120 | |
5-faces | 725760: 60480 112 181440 121 483840 | |
4-faces | 2298240: 241920 102 604800 111 1451520 | |
Cells | 3628800: 1209600 101 2419200 | |
Faces | 2419200 | |
Edges | 483840 | |
Vertices | 17280 | |
Vertex figure | ||
Petrie polygon | 30-gon | |
Coxeter group | E8, [3<sup>4,2,1</sup>] | |
Properties | convex |
This polytope, along with the demiocteract, can tessellate 8-dimensional space, represented by the symbol 152, and Coxeter-Dynkin diagram: .
The 17280 vertices can be defined as sign and location permutations of:
All sign combinations (32): (280×32=8960 vertices)
(4, 2, 2, 2, 2, 0, 0, 0)Half of the sign combinations (128): ((1+8+56)×128=8320 vertices)
(2, 2, 2, 2, 2, 2, 2, 2)
(5, 1, 1, 1, 1, 1, 1, 1)
(3, 3, 3, 1, 1, 1, 1, 1)
The edge length is 2 in this coordinate set, and the polytope radius is 4.
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram: .
Removing the node on the end of the 2-length branch leaves the 7-demicube, 141, .
Removing the node on the end of the 4-length branch leaves the 132, .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 7-simplex, 042, .
Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[2]
Configuration matrix | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E8 | k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7 | k-figure | notes | ||||||||||
A7 | f0 | 17280 | 56 | 420 | 280 | 560 | 70 | 280 | 420 | 56 | 168 | 168 | 28 | 56 | 28 | 8 | 8 | E8/A7 = 192*10!/8 | = 17280 | |||
A4A2A1 | f1 | 2 | 483840 | 15 | 15 | 30 | 5 | 30 | 30 | 10 | 30 | 15 | 10 | 15 | 3 | 5 | 3 | x | E8/A4A2A1 = 192*10!/5 | /2/2 = 483840 | ||
A3A2A1 | f2 | 3 | 3 | 2419200 | 2 | 4 | 1 | 8 | 6 | 4 | 12 | 4 | 6 | 8 | 1 | 4 | 2 | v | E8/A3A2A1 = 192*10!/4 | /3!/2 = 2419200 | ||
A3A3 | 110 | f3 | 4 | 6 | 4 | 1209600 | 1 | 4 | 0 | 4 | 6 | 0 | 6 | 4 | 0 | 4 | 1 | E8/A3A3 = 192*10!/4 | /4! = 1209600 | |||
A3A2A1 | 4 | 6 | 4 | 2419200 | 0 | 2 | 3 | 1 | 6 | 3 | 3 | 6 | 1 | 3 | 2 | v | E8/A3A2A1 = 192*10!/4 | /3!/2 = 2419200 | ||||
A4A3 | 120 | f4 | 5 | 10 | 10 | 5 | 0 | 241920 | 4 | 0 | 0 | 6 | 0 | 0 | 4 | 0 | E8/A4A3 = 192*10!/4 | /4! = 241920 | ||||
D4A2 | 111 | 8 | 24 | 32 | 8 | 8 | 604800 | 1 | 3 | 0 | 3 | 3 | 0 | 3 | 1 | E8/D4A2 = 192*10!/8/4 | /3! = 604800 | |||||
A4A1A1 | 5 | 10 | 10 | 0 | 5 | 1451520 | 0 | 2 | 2 | 1 | 4 | 1 | 2 | 2 | E8/A4A1A1 = 192*10!/5 | /2/2 = 1451520 | ||||||
D5A2 | 121 | f5 | 16 | 80 | 160 | 80 | 40 | 16 | 10 | 0 | 60480 | 3 | 0 | 0 | 3 | 0 | E8/D5A2 = 192*10!/16/5 | /3! = 40480 | ||||
D5A1 | 16 | 80 | 160 | 40 | 80 | 0 | 10 | 16 | 181440 | 1 | 2 | 0 | 2 | 1 | E8/D5A1 = 192*10!/16/5 | /2 = 181440 | ||||||
A5A1 | 130 | 6 | 15 | 20 | 0 | 15 | 0 | 0 | 6 | 483840 | 0 | 2 | 1 | 1 | 2 | E8/A5A1 = 192*10!/6 | /2 = 483840 | |||||
E6A1 | 122 | f6 | 72 | 720 | 2160 | 1080 | 1080 | 216 | 270 | 216 | 27 | 27 | 0 | 6720 | 2 | 0 | E8/E6A1 = 192*10!/72/6 | /2 = 6720 | ||||
D6 | 131 | 32 | 240 | 640 | 160 | 480 | 0 | 60 | 192 | 0 | 12 | 32 | 30240 | 1 | 1 | E8/D6 = 192*10!/32/6 | = 30240 | |||||
A6A1 | 140 | 7 | 21 | 35 | 0 | 35 | 0 | 0 | 21 | 0 | 0 | 7 | 69120 | 0 | 2 | E8/A6A1 = 192*10!/7 | /2 = 69120 | |||||
E7 | 132 | f7 | 576 | 10080 | 40320 | 20160 | 30240 | 4032 | 7560 | 12096 | 756 | 1512 | 2016 | 56 | 126 | 0 | 240 | E8/E7 = 192*10!/72/8 | = 240 | |||
D7 | 141 | 64 | 672 | 2240 | 560 | 2240 | 0 | 280 | 1344 | 0 | 84 | 448 | 0 | 14 | 64 | 2160 | E8/D7 = 192*10!/64/7 | = 2160 |
Orthographic projections are shown for the sub-symmetries of E8: E7, E6, B8, B7, B6, B5, B4, B3, B2, A7, and A5 Coxeter planes, as well as two more symmetry planes of order 20 and 24. Vertices are shown as circles, colored by their order of overlap in each projective plane.
bgcolor=#e7dcc3 colspan=2 | Rectified 142 | |
---|---|---|
Type | Uniform 8-polytope | |
Schläfli symbol | t1 | |
Coxeter symbol | 0421 | |
Coxeter diagrams | ||
7-faces | 19680 | |
6-faces | 382560 | |
5-faces | 2661120 | |
4-faces | 9072000 | |
Cells | 16934400 | |
Faces | 16934400 | |
Edges | 7257600 | |
Vertices | 483840 | |
Vertex figure | ×× | |
Coxeter group | E8, [3<sup>4,2,1</sup>] | |
Properties | convex |
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram: .
Removing the node on the end of the 1-length branch leaves the birectified 7-simplex,
Removing the node on the end of the 2-length branch leaves the birectified 7-cube, .
Removing the node on the end of the 3-length branch leaves the rectified 132, .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 5-cell-triangle duoprism prism, .
Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[4]
Configuration matrix | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E8 | k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7 | k-figure | |||||||||||||||||||||||
A4A2A1 | f0 | 483840 | 30 | 30 | 15 | 60 | 10 | 15 | 60 | 30 | 60 | 5 | 20 | 30 | 60 | 30 | 30 | 10 | 20 | 30 | 30 | 15 | 6 | 10 | 10 | 15 | 6 | 3 | 5 | 2 | 3 | xx | ||
A3A1A1 | f1 | 2 | 7257600 | 2 | 1 | 4 | 1 | 2 | 8 | 4 | 6 | 1 | 4 | 8 | 12 | 6 | 4 | 4 | 6 | 12 | 8 | 4 | 1 | 6 | 4 | 8 | 2 | 1 | 4 | 1 | 2 | |||
A3A2 | f2 | 3 | 3 | 4838400 | 1 | 1 | 4 | 0 | 0 | 1 | 4 | 4 | 6 | 0 | 0 | 4 | 6 | 6 | 4 | 0 | 0 | 6 | 4 | 4 | 1 | 0 | 4 | 1 | 1 | |||||
A3A2A1 | 3 | 3 | 2419200 | 0 | 2 | 0 | 4 | 0 | 1 | 0 | 8 | 0 | 6 | 0 | 4 | 0 | 12 | 0 | 4 | 0 | 6 | 0 | 8 | 0 | 1 | 4 | 0 | 2 | ||||||
A2A2A1 | 3 | 3 | 9676800 | 0 | 0 | 2 | 1 | 3 | 0 | 1 | 2 | 6 | 3 | 3 | 1 | 3 | 6 | 6 | 3 | 1 | 3 | 3 | 6 | 2 | 1 | 3 | 1 | 2 | ||||||
A3A3 | 0200 | f3 | 4 | 6 | 4 | 0 | 0 | 1209600 | 1 | 4 | 0 | 0 | 0 | 0 | 4 | 6 | 0 | 0 | 0 | 0 | 6 | 4 | 0 | 0 | 0 | 4 | 1 | 0 | ||||||
0110 | 6 | 12 | 4 | 4 | 0 | 1209600 | 1 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 6 | 0 | 0 | 0 | 6 | 0 | 4 | 0 | 0 | 4 | 0 | 1 | ||||||||
A3A2 | 6 | 12 | 4 | 0 | 4 | 4838400 | 0 | 1 | 1 | 3 | 0 | 0 | 1 | 3 | 3 | 3 | 0 | 0 | 3 | 3 | 3 | 1 | 0 | 3 | 1 | 1 | ||||||||
A3A2A1 | 6 | 12 | 0 | 4 | 4 | 2419200 | 0 | 0 | 2 | 0 | 3 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 3 | 0 | 6 | 0 | 1 | 3 | 0 | 2 | ||||||||
A3A1A1 | 0200 | 4 | 6 | 0 | 0 | 4 | 7257600 | 0 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 2 | 4 | 2 | 1 | 1 | 2 | 4 | 2 | 1 | 2 | 1 | 2 | |||||||
A4A3 | 0210 | f4 | 10 | 30 | 20 | 10 | 0 | 5 | 5 | 0 | 0 | 0 | 241920 | 4 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | |||||||
A4A2 | 10 | 30 | 20 | 0 | 10 | 5 | 0 | 5 | 0 | 0 | 967680 | 1 | 3 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 3 | 1 | 0 | |||||||||
D4A2 | 0111 | 24 | 96 | 32 | 32 | 32 | 0 | 8 | 8 | 8 | 0 | 604800 | 1 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 3 | 0 | 1 | ||||||||
A4A1 | 0210 | 10 | 30 | 10 | 0 | 20 | 0 | 0 | 5 | 0 | 5 | 2903040 | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | ||||||||
A4A1A1 | 10 | 30 | 0 | 10 | 20 | 0 | 0 | 0 | 5 | 5 | 1451520 | 0 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 4 | 0 | 1 | 2 | 0 | 2 | |||||||||
A4A1 | 0300 | 5 | 10 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 5 | 2903040 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | ||||||||
D5A2 | 0211 | f5 | 80 | 480 | 320 | 160 | 160 | 80 | 80 | 80 | 40 | 0 | 16 | 16 | 10 | 0 | 0 | 0 | 60480 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | |||||||
A5A1 | 0220 | 20 | 90 | 60 | 0 | 60 | 15 | 0 | 30 | 0 | 15 | 0 | 6 | 0 | 6 | 0 | 0 | 483840 | 1 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | v | |||||||
D5A1 | 0211 | 80 | 480 | 160 | 160 | 320 | 0 | 40 | 80 | 80 | 80 | 0 | 0 | 10 | 16 | 16 | 0 | 181440 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | ||||||||
A5 | 0310 | 15 | 60 | 20 | 0 | 60 | 0 | 0 | 15 | 0 | 30 | 0 | 0 | 0 | 6 | 0 | 6 | 967680 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | vv | |||||||
A5A1 | 15 | 60 | 0 | 20 | 60 | 0 | 0 | 0 | 15 | 30 | 0 | 0 | 0 | 0 | 6 | 6 | 483840 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | v | ||||||||
0400 | 6 | 15 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 6 | 483840 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 2 | |||||||||
E6A1 | 0221 | f6 | 720 | 6480 | 4320 | 2160 | 4320 | 1080 | 1080 | 2160 | 1080 | 1080 | 216 | 432 | 270 | 432 | 216 | 0 | 27 | 72 | 27 | 0 | 0 | 0 | 6720 | 2 | 0 | 0 | ||||||
A6 | 0320 | 35 | 210 | 140 | 0 | 210 | 35 | 0 | 105 | 0 | 105 | 0 | 21 | 0 | 42 | 0 | 21 | 0 | 7 | 0 | 7 | 0 | 0 | 138240 | 1 | 1 | 0 | |||||||
D6 | 0311 | 240 | 1920 | 640 | 640 | 1920 | 0 | 160 | 480 | 480 | 960 | 0 | 0 | 60 | 192 | 192 | 192 | 0 | 0 | 12 | 32 | 32 | 0 | 30240 | 1 | 0 | 1 | |||||||
A6 | 0410 | 21 | 105 | 35 | 0 | 140 | 0 | 0 | 35 | 0 | 105 | 0 | 0 | 0 | 21 | 0 | 42 | 0 | 0 | 0 | 7 | 0 | 7 | 138240 | 0 | 1 | 1 | |||||||
A6A1 | 21 | 105 | 0 | 35 | 140 | 0 | 0 | 0 | 35 | 105 | 0 | 0 | 0 | 0 | 21 | 42 | 0 | 0 | 0 | 0 | 7 | 7 | 69120 | 0 | 0 | 2 | ||||||||
E7 | 0321 | f7 | 10080 | 120960 | 80640 | 40320 | 120960 | 20160 | 20160 | 60480 | 30240 | 60480 | 4032 | 12096 | 7560 | 24192 | 12096 | 12096 | 756 | 4032 | 1512 | 4032 | 2016 | 0 | 56 | 576 | 126 | 0 | 0 | 240 | ||||
A7 | 0420 | 56 | 420 | 280 | 0 | 560 | 70 | 0 | 280 | 0 | 420 | 0 | 56 | 0 | 168 | 0 | 168 | 0 | 28 | 0 | 56 | 0 | 28 | 0 | 8 | 0 | 8 | 0 | 17280 | |||||
D7 | 0411 | 672 | 6720 | 2240 | 2240 | 8960 | 0 | 560 | 2240 | 2240 | 6720 | 0 | 0 | 280 | 1344 | 1344 | 2688 | 0 | 0 | 84 | 448 | 448 | 448 | 0 | 0 | 14 | 64 | 64 | 2160 |
Orthographic projections are shown for the sub-symmetries of B6, B5, B4, B3, B2, A7, and A5 Coxeter planes. Vertices are shown as circles, colored by their order of overlap in each projective plane.
(Planes for E8: E7, E6, B8, B7, [24] are not shown for being too large to display.)