In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection.[1] It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of zero sets and it is by definition equal to the empty set.
For explanation of the symbols used in this article, refer to the table of mathematical symbols.
The union of two sets A and B is the set of elements which are in A, in B, or in both A and B.[2] In set-builder notation,
A\cupB=\{x:x\inAorx\inB\}
For example, if A = and B = then A ∪ B = . A more elaborate example (involving two infinite sets) is:
A =
B =
A\cupB=\{2,3,4,5,6,...\}
As another example, the number 9 is not contained in the union of the set of prime numbers and the set of even numbers, because 9 is neither prime nor even.
Sets cannot have duplicate elements,[4] so the union of the sets and is . Multiple occurrences of identical elements have no effect on the cardinality of a set or its contents.
See also: List of set identities and relations and Algebra of sets.
Binary union is an associative operation; that is, for any sets,Thus, the parentheses may be omitted without ambiguity: either of the above can be written as . Also, union is commutative, so the sets can be written in any order.[5] The empty set is an identity element for the operation of union. That is,, for any set . Also, the union operation is idempotent: . All these properties follow from analogous facts about logical disjunction.
Intersection distributes over union and union distributes over intersectionThe power set of a set, together with the operations given by union, intersection, and complementation, is a Boolean algebra. In this Boolean algebra, union can be expressed in terms of intersection and complementation by the formulawhere the superscript
{}\complement
One can take the union of several sets simultaneously. For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C.
A finite union is the union of a finite number of sets; the phrase does not imply that the union set is a finite set.[6] [7]
The most general notion is the union of an arbitrary collection of sets, sometimes called an infinitary union. If M is a set or class whose elements are sets, then x is an element of the union of M if and only if there is at least one element A of M such that x is an element of A.[8] In symbols:
x\incupM\iff\existsA\inM, x\inA.
The notation for the general concept can vary considerably. For a finite union of sets
S1,S2,S3,...,Sn
S1\cupS2\cupS3\cup...\cupSn
\left\{Ai:i\inI\right\}
Ai
When the symbol "∪" is placed before other symbols (instead of between them), it is usually rendered as a larger size.
In Unicode, union is represented by the character .[9] In TeX,
\cup
\cup
and is rendered from \bigcup
.