In mathematics, the étale topos of a scheme X is the category of all étale sheaves on X. An étale sheaf is a sheaf on the étale site of X.
Let X be a scheme. An étale covering of X is a family
\{\varphii:Ui\toX\}i\in
\varphii
X=cupi\varphii(Ui)
The category Ét(X) is the category of all étale schemes over X. The collection of all étale coverings of a étale scheme U over X i.e. an object in Ét(X) defines a Grothendieck pretopology on Ét(X) which in turn induces a Grothendieck topology, the étale topology on X. The category together with the étale topology on it is called the étale site on X.
The étale topos
Xét
lF
For each étale U over X and each étale covering
\{\varphii:Ui\toU\}
0\tolF(U)\to\prodilF(Ui){{{}\atop\longrightarrow}\atop{\longrightarrow\atop{}}}\prodi,jlF(Uij)
is exact, where
Uij=Ui x UUj