't Hooft symbol explained

The t Hooft symbol is a collection of numbers which allows one to express the generators of the SU(2) Lie algebra in terms of the generators of Lorentz algebra. The symbol is a blend between the Kronecker delta and the Levi-Civita symbol. It was introduced by Gerard 't Hooft. It is used in the construction of the BPST instanton.

Definition

a
η
\mu\nu
is the 't Hooft symbol:
a
η
\mu\nu

=\begin{cases}\epsilona\mu\nu&\mu,\nu=1,2,3\ -\deltaa\nu&\mu=4\\deltaa\mu&\nu=4\ 0&\mu=\nu=4\end{cases}

Where

\deltaa\nu

and

\deltaa\mu

are instances of the Kronecker delta, and

\epsilona\mu\nu

is the Levi-Civita symbol.

In other words, they are defined by

(

a=1,2,3;~\mu,\nu=1,2,3,4;~\epsilon1=+1

)

ηa=\epsilona+\deltaa\delta\nu-\deltaa\delta\mu

\barηa=\epsilona-\deltaa\delta\nu+\deltaa\delta\mu

where the latter are the anti-self-dual 't Hooft symbols.

Matrix Form

In matrix form, the 't Hooft symbols are

η1\mu\nu=\begin{bmatrix} 0&0&0&1\\ 0&0&1&0\\ 0&-1&0&0\\ -1&0&0&0\end{bmatrix}, η2\mu\nu=\begin{bmatrix} 0&0&-1&0\\ 0&0&0&1\\ 1&0&0&0\\ 0&-1&0&0\end{bmatrix}, η3\mu\nu=\begin{bmatrix} 0&1&0&0\\ -1&0&0&0\\ 0&0&0&1\\ 0&0&-1&0\end{bmatrix},

and their anti-self-duals are the following:

\bar{η}1\mu\nu=\begin{bmatrix} 0&0&0&-1\\ 0&0&1&0\\ 0&-1&0&0\\ 1&0&0&0\end{bmatrix}, \bar{η}2\mu\nu=\begin{bmatrix} 0&0&-1&0\\ 0&0&0&-1\\ 1&0&0&0\\ 0&1&0&0\end{bmatrix}, \bar{η}3\mu\nu=\begin{bmatrix} 0&1&0&0\\ -1&0&0&0\\ 0&0&0&-1\\ 0&0&1&0\end{bmatrix}.

Properties

They satisfy the self-duality and the anti-self-duality properties:

ηa\mu\nu=

1
2

\epsilon\mu\nu\rho\sigmaηa\rho\sigma,    \barηa\mu\nu=-

1
2

\epsilon\mu\nu\rho\sigma\barηa\rho\sigma

Some other properties are

\epsilonabcηb\mu\nuηc\rho\sigma=\delta\mu\rhoηa\nu\sigma+\delta\nu\sigmaηa\mu\rho-\delta\mu\sigmaηa\nu\rho-\delta\nu\rhoηa\mu\sigma

ηa\mu\nuηa\rho\sigma=\delta\mu\rho\delta\nu\sigma-\delta\mu\sigma\delta\nu\rho+\epsilon\mu\nu\rho\sigma,

ηa\mu\rhoηb\mu\sigma=\deltaab\delta\rho\sigma+\epsilonabcηc\rho\sigma,

\epsilon\mu\nu\rho\thetaηa\sigma\theta=\delta\sigma\muηa\nu\rho+\delta\sigma\rhoηa\mu\nu-\delta\sigma\nuηa\mu\rho,

ηa\mu\nuηa\mu\nu=12, ηa\mu\nuηb\mu\nu=4\deltaab, ηa\mu\rhoηa\mu\sigma=3\delta\rho\sigma.

The same holds for

\barη

except for

\barηa\mu\nu\barηa\rho\sigma=\delta\mu\rho\delta\nu\sigma-\delta\mu\sigma\delta\nu\rho-\epsilon\mu\nu\rho\sigma.

and

\epsilon\mu\nu\rho\theta\barηa\sigma\theta=-\delta\sigma\mu\barηa\nu\rho-\delta\sigma\rho\barηa\mu\nu+\delta\sigma\nu\barηa\mu\rho,

Obviously

ηa\mu\nu\barηb\mu\nu=0

due to differentduality properties.

Many properties of these are tabulated in the appendix of 't Hooft's paper[1] and also in the article by Belitsky et al.[2]

See also

Notes and References

  1. 't Hooft . G.. Computation of the quantum effects due to a four-dimensional pseudoparticle. Physical Review D. 14. 12. 3432–3450. 1976. 10.1103/PhysRevD.14.3432. 1976PhRvD..14.3432T .
  2. Belitsky . A. V. . Vandoren . S. . Nieuwenhuizen . P. V. . 10.1088/0264-9381/17/17/305 . Yang-Mills and D-instantons . Classical and Quantum Gravity . 17 . 17 . 3521–3570 . 2000 . hep-th/0004186 . 2000CQGra..17.3521B . 16107344 .